High-throughput optical screening of cellular mechanotransduction

被引:0
|
作者
Compton J.L. [1 ,2 ]
Luo J.C. [2 ,3 ]
Ma H. [1 ,2 ]
Botvinick E. [2 ,3 ,4 ]
Venugopalan V. [1 ,2 ,3 ]
机构
[1] Department of Chemical Engineering and Materials Science, University of California, Irvine
[2] Laser Microbeam and Medical Program, Beckman Laser Institute, University of California, Irvine
[3] Department of Biomedical Engineering, University of California, Irvine
[4] Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine
来源
Botvinick, E. (ebotvini@uci.edu) | 1600年 / Nature Publishing Group卷 / 08期
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
47;
D O I
10.1038/nphoton.2014.165
中图分类号
学科分类号
摘要
We introduce an optical platform for rapid, high-throughput screening of exogenous molecules that affect cellular mechanotransduction. Our method initiates mechanotransduction in adherent cells using single laser-microbeam generated microcavitation bubbles without requiring flow chambers or microfluidics. These microcavitation bubbles expose adherent cells to a microtsunami, a transient microscale burst of hydrodynamic shear stress, which stimulates cells over areas approaching 1 mm2. We demonstrate microtsunami-initiated mechanosignalling in primary human endothelial cells. This observed signalling is consistent with G-protein-coupled receptor stimulation, resulting in Ca2+ release by the endoplasmic reticulum. Moreover, we demonstrate the dose-dependent modulation of microtsunami-induced Ca2+ signalling by introducing a known inhibitor to this pathway. The imaging of Ca2+ signalling and its modulation by exogenous molecules demonstrates the capacity to initiate and assess cellular mechanosignalling in real time. We utilize this capability to screen the effects of a set of small molecules on cellular mechanotransduction in 96-well plates using standard imaging cytometry. © 2014 Macmillan Publishers Limited. All rights reserved.
引用
收藏
页码:710 / 715
页数:5
相关论文
共 50 条
  • [21] High-Throughput Screening Using Cellular Contraction As A Mechanical Endpoint
    Park, C.
    Burger, S.
    Frykenberg, M.
    Tambe, D.
    Zhou, E.
    Krishnan, R.
    Marinkovic, A.
    Tschumperlin, D. J.
    Lavoie, T. L.
    Dowell, M.
    Chen, B.
    Gardel, M.
    Greene, G.
    Butler, J. P.
    Solway, J.
    Fredberg, J. J.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2013, 187
  • [22] High-Throughput Mechanotransduction in Drosophila Embryos with a Microfluidic Device
    Shorr, Ardon Z.
    Sonmez, Utku
    Minden, Jonathan S.
    LeDuc, Philip R.
    BIOPHYSICAL JOURNAL, 2018, 114 (03) : 325A - 325A
  • [23] Miniaturization of optical sensors and their potential for high-throughput screening of foods
    Rodriguez-Saona, Luis
    Aykas, Didem Peren
    Borba, Karla Rodrigues
    Urtubia, Alejandra
    CURRENT OPINION IN FOOD SCIENCE, 2020, 31 : 136 - 150
  • [24] Multichannel optical biosensors for label free high-throughput screening
    Nikitin, P
    Goshkov, B
    Valeiko, M
    Nikitin, S
    FIBER OPTIC SENSOR TECHNOLOGY AND APPLICATIONS 2001, 2001, 4578 : 126 - 135
  • [25] Cellular Models and High-Throughput Screening for Genetic Causality of Intellectual Disability
    Fell, Christopher W.
    Nagy, Vanja
    TRENDS IN MOLECULAR MEDICINE, 2021, 27 (03) : 220 - 230
  • [26] High-throughput screening with transcriptomics
    Singh, Arunima
    NATURE METHODS, 2020, 17 (03) : 251 - 251
  • [27] High-throughput virtual screening
    Hirata, Shuzo
    Shizu, Katsuyuki
    NATURE MATERIALS, 2016, 15 (10) : 1056 - 1057
  • [28] High-throughput screening analysis
    不详
    R&D MAGAZINE, 1997, 39 (08): : 47 - 47
  • [29] High-throughput screening on microchips
    Chow, A
    Kopf-Sill, A
    Nikiforov, T
    Zhou, A
    Coffin, J
    Wada, G
    Alajoki, L
    Spaid, M
    Yurkovetsky, Y
    Sundberg, S
    Parce, JW
    MICRO TOTAL ANALYSIS SYSTEMS 2000, PROCEEDINGS, 2000, : 489 - 492
  • [30] High-Throughput Hybridoma Screening
    Sawyer, Alan
    Hall, Duncan
    GENETIC ENGINEERING & BIOTECHNOLOGY NEWS, 2011, 31 (05): : 28 - +