Machine learning methodologies versus cardiovascular risk scores, in predicting disease risk

被引:0
|
作者
Alexandros C. Dimopoulos
Mara Nikolaidou
Francisco Félix Caballero
Worrawat Engchuan
Albert Sanchez-Niubo
Holger Arndt
José Luis Ayuso-Mateos
Josep Maria Haro
Somnath Chatterji
Ekavi N. Georgousopoulou
Christos Pitsavos
Demosthenes B. Panagiotakos
机构
[1] Harokopio University,Department of Nutrition and Dietetics, School of Health Science and Education
[2] Harokopio University,Department of Informatics & Telematics, School of Digital Technology
[3] Universidad Autónoma de Madrid,Department of Preventive Medicine and Public Health
[4] CIBER of Epidemiology and Public Health,Hospital Universitario de La Princesa
[5] Instituto de Investigación Sanitaria Princesa (IP),The Centre for Applied Genomics, Genetics and Genome Biology
[6] The Hospital for Sick Children,Health Metrics and Measurement
[7] Parc Sanitari Sant Joan de Déu,Faculty of Health
[8] SPRING TECHNO GMBH & Co. KG,School of Medicine
[9] World Health Organization,undefined
[10] University of Canberra,undefined
[11] University of Athens,undefined
[12] CIBER of Mental Health,undefined
关键词
Cardiovascular disease; Risk prediction; Machine learning; Model performance;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] Machine Learning Method for Analyzing and Predicting Cardiovascular Disease
    Narayan, Yogendra (narayan.yogendra1986@gmail.com), 1600, Springer Science and Business Media Deutschland GmbH (832):
  • [42] PREDICTING MILD COGNITIVE IMPAIRMENT AND DEMENTIA: MACHINE LEARNING VERSUS TRADITIONAL METHODOLOGIES
    Kang, Bada
    Hong, Dahye
    Kim, Jennifer
    Oh, Sarah
    INNOVATION IN AGING, 2024, 8 : 1032 - 1033
  • [43] Predicting biology instead of disease risk by overlapping oncological polygenic risk scores
    van Rooij, Jeroen
    de Vries, Jard
    Sedaghati-Khayat, Bahar
    Van Meurs, Joyce
    Broer, Linda
    Uitterlinden, Andre
    Verkerk, Annemieke
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2023, 31 : 564 - 564
  • [44] CARDIOVASCULAR RISK PREDICTION APPLYING MACHINE LEARNING
    Castel, S.
    Maldonado, L.
    Aguilar, I.
    Malo, S.
    Rabanaque, M. J.
    GACETA SANITARIA, 2023, 37 : S204 - S204
  • [45] Usefulness of Risk Scores to Estimate the Risk of Cardiovascular Disease in Patients With Rheumatoid Arthritis
    Crowson, Cynthia S.
    Matteson, Eric L.
    Roger, Veronique L.
    Therneau, Terry M.
    Gabriel, Sherine E.
    AMERICAN JOURNAL OF CARDIOLOGY, 2012, 110 (03): : 420 - 424
  • [46] Clinical Implications of Integrating Polygenic Risk Into Established Cardiovascular Disease Risk Scores
    Riveros-Mckay, Fernando
    Selzam, Saskia
    Seth, Priyanka
    Moore, Rachel
    Tarran, William A.
    O'Sullivan, Jack W.
    Ashley, Euan A.
    McVean, Gilean
    Plagnol, Vincent
    Donnelly, Peter
    Weale, Michael E.
    CIRCULATION, 2021, 144
  • [47] Reliability of Traditional Cardiovascular Risk Calculators in Predicting Risk of Cardiovascular Disease in Systemic Sclerosis
    Radwan, Yasser
    Kurmann, Reto
    Sandhu, Avneek Singh
    Crowson, Cynthia
    Matteson, Eric
    Osborn, Thomas
    Warrington, Kenneth
    Mankad, Rekha
    Makol, Ashima
    ARTHRITIS & RHEUMATOLOGY, 2019, 71
  • [48] Predicting risk of death from cardiovascular disease - Individual cardiovascular risk cannot be predicted
    Vesti-Nielsen, J
    BRITISH MEDICAL JOURNAL, 2001, 323 (7319): : 1000 - 1000
  • [49] Machine Learning Approaches for Predicting Risk of Cardiometabolic Disease among University Students
    Musleh, Dhiaa
    Alkhwaja, Ali
    Alkhwaja, Ibrahim
    Alghamdi, Mohammed
    Abahussain, Hussam
    Albugami, Mohammed
    Alfawaz, Faisal
    El-Ashker, Said
    Al-Hariri, Mohammed
    BIG DATA AND COGNITIVE COMPUTING, 2024, 8 (03)
  • [50] Predicting the Risk of Chronic Kidney Disease (CKD) Using Machine Learning Algorithm
    Wang, Weilun
    Chakraborty, Goutam
    Chakraborty, Basabi
    APPLIED SCIENCES-BASEL, 2021, 11 (01): : 1 - 17