Machine learning methodologies versus cardiovascular risk scores, in predicting disease risk

被引:0
|
作者
Alexandros C. Dimopoulos
Mara Nikolaidou
Francisco Félix Caballero
Worrawat Engchuan
Albert Sanchez-Niubo
Holger Arndt
José Luis Ayuso-Mateos
Josep Maria Haro
Somnath Chatterji
Ekavi N. Georgousopoulou
Christos Pitsavos
Demosthenes B. Panagiotakos
机构
[1] Harokopio University,Department of Nutrition and Dietetics, School of Health Science and Education
[2] Harokopio University,Department of Informatics & Telematics, School of Digital Technology
[3] Universidad Autónoma de Madrid,Department of Preventive Medicine and Public Health
[4] CIBER of Epidemiology and Public Health,Hospital Universitario de La Princesa
[5] Instituto de Investigación Sanitaria Princesa (IP),The Centre for Applied Genomics, Genetics and Genome Biology
[6] The Hospital for Sick Children,Health Metrics and Measurement
[7] Parc Sanitari Sant Joan de Déu,Faculty of Health
[8] SPRING TECHNO GMBH & Co. KG,School of Medicine
[9] World Health Organization,undefined
[10] University of Canberra,undefined
[11] University of Athens,undefined
[12] CIBER of Mental Health,undefined
关键词
Cardiovascular disease; Risk prediction; Machine learning; Model performance;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] Polysocial Risk Scores: Implications for Cardiovascular Disease Risk Assessment and Management
    Zulqarnain Javed
    Harun Kundi
    Ryan Chang
    Anoop Titus
    Hassaan Arshad
    Current Atherosclerosis Reports, 2023, 25 : 1059 - 1068
  • [32] Interpretable machine learning for predicting chronic kidney disease progression risk
    Zheng, Jin-Xin
    Li, Xin
    Zhu, Jiang
    Guan, Shi-Yang
    Zhang, Shun-Xian
    Wang, Wei-Ming
    DIGITAL HEALTH, 2024, 10
  • [33] Exploring machine learning strategies for predicting cardiovascular disease risk factors from multi-omic data
    Drouard, Gabin
    Mykkanen, Juha
    Heiskanen, Jarkko
    Pohjonen, Joona
    Ruohonen, Saku
    Pahkala, Katja
    Lehtimaki, Terho
    Wang, Xiaoling
    Ollikainen, Miina
    Ripatti, Samuli
    Pirinen, Matti
    Raitakari, Olli
    Kaprio, Jaakko
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2024, 24 (01)
  • [34] Machine learning models for predicting blood pressure phenotypes by combining multiple polygenic risk scores
    Hrytsenko, Yana
    Shea, Benjamin
    Elgart, Michael
    Kurniansyah, Nuzulul
    Lyons, Genevieve
    Morrison, Alanna C.
    Carson, April P.
    Haring, Bernhard
    Mitchell, Braxton D.
    Psaty, Bruce M.
    Jaeger, Byron C.
    Gu, C. Charles
    Kooperberg, Charles
    Levy, Daniel
    Lloyd-Jones, Donald
    Choi, Eunhee
    Brody, Jennifer A.
    Smith, Jennifer A.
    Rotter, Jerome I.
    Moll, Matthew
    Fornage, Myriam
    Simon, Noah
    Castaldi, Peter
    Casanova, Ramon
    Chung, Ren-Hua
    Kaplan, Robert
    Loos, Ruth J. F.
    Kardia, Sharon L. R.
    Rich, Stephen S.
    Redline, Susan
    Kelly, Tanika
    O'Connor, Timothy
    Zhao, Wei
    Kim, Wonji
    Guo, Xiuqing
    Ida Chen, Yii-Der
    Trans Omics Precision Med Consortium
    Sofer, Tamar
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [35] Machine Learning For Tuning, Selection, And Ensemble Of Multiple Risk Scores For Predicting Type 2 Diabetes
    Liu, Yujia
    Ye, Shangyuan
    Xiao, Xianchao
    Sun, Chenglin
    Wang, Gang
    Wang, Guixia
    Zhang, Bo
    RISK MANAGEMENT AND HEALTHCARE POLICY, 2019, 12 : 189 - 198
  • [36] Atherosclerotic Cardiovascular Disease Risk Estimates Using the Predicting Risk of Cardiovascular Disease Events Equations
    Anderson, Timothy S.
    Wilson, Linnea M.
    Sussman, Jeremy B.
    JAMA INTERNAL MEDICINE, 2024, 184 (08) : 963 - 970
  • [37] Machine Learning for Proteomic Risk Scores in Heart Failure
    Xu, Dongchu
    Cunningham, Jonathan
    Marti-castellote, Pablo-miki
    Zhang, Luqing
    Patel-murray, Natasha l.
    Prescott, Margaret f.
    Md, William chutkow
    Mendelson, Michael m.
    Solomon, Scott d.
    Claggett, Brian l.
    JOURNAL OF CARDIAC FAILURE, 2023, 29 (11) : 1583 - 1585
  • [38] Epistatic Features and Machine Learning Improve Alzheimer's Disease Risk Prediction Over Polygenic Risk Scores
    Hermes, Stephen
    Cady, Janet
    Armentrout, Steven
    O'Connor, James
    Holdaway, Sarah Carlson
    Cruchaga, Carlos
    Wingo, Thomas
    Greytak, Ellen McRae
    JOURNAL OF ALZHEIMERS DISEASE, 2024, 99 (04) : 1425 - 1440
  • [39] Credit scores, cardiovascular disease risk, and human capital
    Israel, Salomon
    Caspi, Avshalom
    Belsky, Daniel W.
    Harrington, HonaLee
    Hogan, Sean
    Houts, Renate
    Ramrakha, Sandhya
    Sanders, Seth
    Poulton, Richie
    Moffitt, Terrie E.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (48) : 17087 - 17092
  • [40] Risk scores, atherosclerotic cardiovascular disease and the crystal ball
    Temporelli, Pier Luigi
    EUROPEAN JOURNAL OF PREVENTIVE CARDIOLOGY, 2021, 28 (14) : E14 - E16