Machine learning methodologies versus cardiovascular risk scores, in predicting disease risk

被引:0
|
作者
Alexandros C. Dimopoulos
Mara Nikolaidou
Francisco Félix Caballero
Worrawat Engchuan
Albert Sanchez-Niubo
Holger Arndt
José Luis Ayuso-Mateos
Josep Maria Haro
Somnath Chatterji
Ekavi N. Georgousopoulou
Christos Pitsavos
Demosthenes B. Panagiotakos
机构
[1] Harokopio University,Department of Nutrition and Dietetics, School of Health Science and Education
[2] Harokopio University,Department of Informatics & Telematics, School of Digital Technology
[3] Universidad Autónoma de Madrid,Department of Preventive Medicine and Public Health
[4] CIBER of Epidemiology and Public Health,Hospital Universitario de La Princesa
[5] Instituto de Investigación Sanitaria Princesa (IP),The Centre for Applied Genomics, Genetics and Genome Biology
[6] The Hospital for Sick Children,Health Metrics and Measurement
[7] Parc Sanitari Sant Joan de Déu,Faculty of Health
[8] SPRING TECHNO GMBH & Co. KG,School of Medicine
[9] World Health Organization,undefined
[10] University of Canberra,undefined
[11] University of Athens,undefined
[12] CIBER of Mental Health,undefined
关键词
Cardiovascular disease; Risk prediction; Machine learning; Model performance;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Machine learning methodologies versus cardiovascular risk scores, in predicting disease risk
    Dimopoulos, Alexandros C.
    Nikolaidou, Mara
    Felix Caballero, Francisco
    Engchuan, Worrawat
    Sanchez-Niubo, Albert
    Arndt, Holger
    Luis Ayuso-Mateos, Jose
    Maria Haro, Josep
    Chatterji, Somnath
    Georgousopoulou, Ekavi N.
    Pitsavos, Christos
    Panagiotakos, Demosthenes B.
    BMC MEDICAL RESEARCH METHODOLOGY, 2018, 18
  • [2] A Machine Learning-Based Model for Predicting the Risk of Cardiovascular Disease
    Hsiao, Chiu-Han
    Yu, Po-Chun
    Hsieh, Chia-Ying
    Zhong, Bing-Zi
    Tsai, Yu-Ling
    Cheng, Hao-min
    Chang, Wei-Lun
    Lin, Frank Yeong-Sung
    Huang, Yennun
    ADVANCED INFORMATION NETWORKING AND APPLICATIONS, AINA-2022, VOL 1, 2022, 449 : 364 - 374
  • [3] Machine learning models for predicting the risk factor of carotid plaque in cardiovascular disease
    Bin, Chengling
    Li, Qin
    Tang, Jing
    Dai, Chaorong
    Jiang, Ting
    Xie, Xiufang
    Qiu, Min
    Chen, Lumiao
    Yang, Shaorong
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2023, 10
  • [4] PREDICTING DEMENTIA: COMPARISON OF DEMENTIA AND CARDIOVASCULAR DISEASE RISK SCORES
    Singh-Manoux, A.
    GERONTOLOGIST, 2015, 55 : 150 - 150
  • [5] Predicting cardiovascular risk Using risk scores with patients
    Parkes, Gary
    BRITISH MEDICAL JOURNAL, 2010, 340
  • [6] Polygenic risk scores outperform machine learning methods in predicting coronary artery disease status
    Gola, Damian
    Erdmann, Jeannette
    Mueller-Myhsok, Bertram
    Schunkert, Heribert
    Koenig, Inke R.
    GENETIC EPIDEMIOLOGY, 2020, 44 (02) : 125 - 138
  • [7] Predicting the risk of cardiovascular disease in adults exposed to heavy metals: Interpretable machine learning
    Shen, Meiyue
    Zhang, Yine
    Zhan, Runqing
    Du, Tingwei
    Shen, Peixuan
    Lu, Xiaochuan
    Liu, Shengnan
    Guo, Rongrong
    Shen, Xiaoli
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2025, 290
  • [8] Predicting control of cardiovascular disease risk factors in South Asia using machine learning
    Reuter, Anna
    Ali, Mohammed K.
    Mohan, Viswanathan
    Chwastiak, Lydia
    Singh, Kavita
    Narayan, K. M. Venkat
    Prabhakaran, Dorairaj
    Tandon, Nikhil
    Sudharsanan, Nikkil
    NPJ DIGITAL MEDICINE, 2024, 7 (01):
  • [9] Predicting Australian Adults at High Risk of Cardiovascular Disease Mortality Using Standard Risk Factors and Machine Learning
    Sajeev, Shelda
    Champion, Stephanie
    Beleigoli, Alline
    Chew, Derek
    Reed, Richard L.
    Magliano, Dianna J.
    Shaw, Jonathan E.
    Milne, Roger L.
    Appleton, Sarah
    Gill, Tiffany K.
    Maeder, Anthony
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2021, 18 (06) : 1 - 14
  • [10] Clinical utility and implementation of polygenic risk scores for predicting cardiovascular disease
    Schunkert, Heribert
    Di Angelantonio, Emanuele
    Inouye, Michael
    Patel, Riyaz S.
    Ripatti, Samuli
    Widen, Elisabeth
    Sanderson, Saskia C.
    Kaski, Juan Pablo
    Mcevoy, John W.
    Vardas, Panos
    Wood, Angela
    Aboyans, Victor
    Vassiliou, Vassilios S.
    Visseren, Frank L. J.
    Lopes, Luis R.
    Elliott, Perry
    Kavousi, Maryam
    EUROPEAN HEART JOURNAL, 2025,