Carbon nanotube-based biosensors for DNA structure characterization

被引:0
|
作者
T. I. Abdullin
O. V. Bondar’
A. A. Rizvanov
I. I. Nikitina
机构
[1] Kazan State University,Faculty of Biology and Soil Science
[2] Kazan State Medical University,Central Research Laboratory
来源
关键词
Apply Biochemistry; Oxidation Current; Potential Sweep Rate; Ultrasonic Shearing; Glassy Carbon Elec;
D O I
暂无
中图分类号
学科分类号
摘要
The possibility of DNA detection using electrodes modified with carbon nanotubes (CNTs) was studied. CNTs facilitate the electrochemical oxidation of DNA guanine nucleotide, which allows direct detection of DNA on a modified electrode. Electrochemical properties of DNA depend on its secondary structure and molecular weight. Denaturation of native DNA improves the adsorption of biopolymer on CNTs and results in an increase in DNA oxidation current on the modified electrode. A similar effect is observed after ultrasonic shearing of DNA or its treatment with Fenton’s reagent due to the fragmentation of biopolymer. Our results demonstrate the feasibility of biosensors based on CNT-modified electrodes for the direct detection and characterization of DNA and DNA damaging factors.
引用
下载
收藏
页码:229 / 232
页数:3
相关论文
共 50 条
  • [41] Carbon nanotube-based black coatings
    Lehman, J.
    Yung, C.
    Tomlin, N.
    Conklin, D.
    Stephens, M.
    APPLIED PHYSICS REVIEWS, 2018, 5 (01):
  • [42] Bioinspired carbon nanotube-based materials
    Fan, Yi
    Hou, Yaqi
    Wang, Miao
    Zheng, Jing
    Hou, Xu
    MATERIALS ADVANCES, 2022, 3 (07): : 3070 - 3088
  • [43] Carbon nanotube-based nanoprobe electrode
    Kawano, Takeshi
    Cho, Chung Yeung
    Lin, Liwei
    2007 2ND IEEE INTERNATIONAL CONFERENCE ON NANO/MICRO ENGINEERED AND MOLECULAR SYSTEMS, VOLS 1-3, 2007, : 651 - +
  • [44] Carbon nanotube-based fluorescence sensors
    Li, Chun
    Shi, Gaoquan
    JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS, 2014, 19 : 20 - 34
  • [45] Carbon nanotube-based electrochemical biosensors for determination of Candida albicans's quorum sensing molecule
    Hassan, Rabeay Y. A.
    El-Attar, Rehab O.
    Hassan, Hassan N. A.
    Ahmed, Mona A.
    Khaled, Elmorsy
    SENSORS AND ACTUATORS B-CHEMICAL, 2017, 244 : 565 - 570
  • [46] Carbon nanotube-based flexible electronics
    Xiang, Li
    Zhang, Heng
    Hu, Youfan
    Peng, Lian-Mao
    JOURNAL OF MATERIALS CHEMISTRY C, 2018, 6 (29) : 7714 - 7727
  • [47] Spin in carbon nanotube-based oscillators
    Department of Mechanical and Industrial Engineering, Center for Computer-Aided Design, University of Iowa, Iowa City, IA 52242, United States
    不详
    不详
    Int. J. Nanosci., 2006, 1 (47-55):
  • [48] A carbon nanotube-based radiation sensor
    Ma, J.
    Yeow, J.T.W.
    Chow, J.C.L.
    Barnett, R.B.
    International Journal of Robotics and Automation, 2007, 22 (01): : 49 - 57
  • [49] A carbon nanotube-based pressure sensor
    Karimov, Kh S.
    Saleem, M.
    Karieva, Z. M.
    Khan, Adam
    Qasuria, T. A.
    Mateen, A.
    PHYSICA SCRIPTA, 2011, 83 (06)
  • [50] Carbon Nanotube-Based Power Diode
    Mousa, Omar F.
    Abu Qahouq, Jaber A.
    2011 IEEE 33RD INTERNATIONAL TELECOMMUNICATIONS ENERGY CONFERENCE (INTELEC), 2011,