Multiple Imputation for General Missing Data Patterns in the Presence of High-dimensional Data

被引:0
|
作者
Yi Deng
Changgee Chang
Moges Seyoum Ido
Qi Long
机构
[1] Emory University,Department of Biostatistics and Bioinformatics
[2] Georgia Department of Public Health,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Multiple imputation (MI) has been widely used for handling missing data in biomedical research. In the presence of high-dimensional data, regularized regression has been used as a natural strategy for building imputation models, but limited research has been conducted for handling general missing data patterns where multiple variables have missing values. Using the idea of multiple imputation by chained equations (MICE), we investigate two approaches of using regularized regression to impute missing values of high-dimensional data that can handle general missing data patterns. We compare our MICE methods with several existing imputation methods in simulation studies. Our simulation results demonstrate the superiority of the proposed MICE approach based on an indirect use of regularized regression in terms of bias. We further illustrate the proposed methods using two data examples.
引用
收藏
相关论文
共 50 条
  • [21] Imputation of rounded zeros for high-dimensional compositional data
    Templ, Matthias
    Hron, Karel
    Filzmoser, Peter
    Gardlo, Alzbeta
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2016, 155 : 183 - 190
  • [22] Multiple imputation with missing data indicators
    Beesley, Lauren J.
    Bondarenko, Irina
    Elliot, Michael R.
    Kurian, Allison W.
    Katz, Steven J.
    Taylor, Jeremy M. G.
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2021, 30 (12) : 2685 - 2700
  • [23] MULTIPLE IMPUTATION AS A MISSING DATA MACHINE
    BRAND, J
    VANBUUREN, S
    VANMULLIGEN, EM
    TIMMERS, T
    GELSEMA, E
    [J]. JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 1994, : 303 - 306
  • [24] Multiple Imputation For Missing Ordinal Data
    Chen, Ling
    Toma-Drane, Mariana
    Valois, Robert F.
    Drane, J. Wanzer
    [J]. JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2005, 4 (01) : 288 - 299
  • [25] Multiple imputation for nonignorable missing data
    Im, Jongho
    Kim, Soeun
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2017, 46 (04) : 583 - 592
  • [26] Multiple imputation: dealing with missing data
    de Goeij, Moniek C. M.
    van Diepen, Merel
    Jager, Kitty J.
    Tripepi, Giovanni
    Zoccali, Carmine
    Dekker, Friedo W.
    [J]. NEPHROLOGY DIALYSIS TRANSPLANTATION, 2013, 28 (10) : 2415 - 2420
  • [27] Multiple imputation for nonignorable missing data
    Jongho Im
    Soeun Kim
    [J]. Journal of the Korean Statistical Society, 2017, 46 : 583 - 592
  • [28] A simulation comparison of imputation methods for quantitative data in the presence of multiple data patterns
    Solaro, N.
    Barbiero, A.
    Manzi, G.
    Ferrari, P. A.
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2018, 88 (18) : 3588 - 3619
  • [29] Multiple imputation of missing data for survey data analysis
    Lupo, Coralie
    Le Bouquin, Sophie
    Michel, Virginie
    Colin, Pierre
    Chauvin, Claire
    [J]. EPIDEMIOLOGIE ET SANTE ANIMALE, 2008, NO 53, 2008, (53): : 73 - 83
  • [30] Multiple testing for high-dimensional data
    Diao, Guoqing
    Hanlon, Bret
    Vidyashankar, Anand N.
    [J]. PERSPECTIVES ON BIG DATA ANALYSIS: METHODOLOGIES AND APPLICATIONS, 2014, 622 : 95 - 108