Multiple imputation for nonignorable missing data

被引:4
|
作者
Im, Jongho [1 ]
Kim, Soeun [2 ]
机构
[1] Iowa State Univ, Dept Stat, Ames, IA USA
[2] Univ Texas Hlth Sci Ctr Houston, Dept Biostat, Houston, TX 77030 USA
关键词
Data augmentation; Item nonresponse; Not missing at random; Selection model; NONRESPONSE; ADJUST;
D O I
10.1016/j.jkss.2017.05.001
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Multiple imputation is a popular technique for analyzing incomplete data. Missing at random mechanism is often assumed when multiple imputation is performed, assuming that the response mechanism does not depend on the missing variable. However, the assumption of ignorable nonresponse may lead to largely biased estimates when in fact the missingness is nonignorable. In this paper, we propose a multiple imputation method in the presence of nonignorable nonresponse. In the proposed method, we take the selection model approach and specify the response model and the respondents' outcome model to capture the joint model of the study variable and the response indicator. The proposed data augmentation algorithm uses the respondents' outcome model and incorporates a semiparametric estimation of the respondents' outcome model. The proposed multiple imputation method performs well if the specified response model is correct. Limited simulation studies are presented to check the performance of the proposed multiple imputation method. (C) 2017 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:583 / 592
页数:10
相关论文
共 50 条
  • [1] Multiple imputation for nonignorable missing data
    Jongho Im
    Soeun Kim
    [J]. Journal of the Korean Statistical Society, 2017, 46 : 583 - 592
  • [2] Parametric fractional imputation for nonignorable missing data
    Kim, Ji Young
    Kim, Jae Kwang
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2012, 41 (03) : 291 - 303
  • [3] Parametric fractional imputation for nonignorable missing data
    Ji Young Kim
    Jae Kwang Kim
    [J]. Journal of the Korean Statistical Society, 2012, 41 : 291 - 303
  • [4] Parametric fractional imputation for mixed models with nonignorable missing data
    Yang, Shu
    Kim, Jae-Kwang
    Zhu, Zhengyuan
    [J]. STATISTICS AND ITS INTERFACE, 2013, 6 (03) : 339 - 347
  • [5] Missing Data and Multiple Imputation
    Cummings, Peter
    [J]. JAMA PEDIATRICS, 2013, 167 (07) : 656 - 661
  • [6] Multiple imputation for missing data
    Patrician, PA
    [J]. RESEARCH IN NURSING & HEALTH, 2002, 25 (01) : 76 - 84
  • [7] Multiple imputation of missing data
    Lydersen, Stian
    [J]. TIDSSKRIFT FOR DEN NORSKE LAEGEFORENING, 2022, 142 (02) : 151 - 151
  • [8] Multiple imputation with missing data indicators
    Beesley, Lauren J.
    Bondarenko, Irina
    Elliot, Michael R.
    Kurian, Allison W.
    Katz, Steven J.
    Taylor, Jeremy M. G.
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2021, 30 (12) : 2685 - 2700
  • [9] MULTIPLE IMPUTATION AS A MISSING DATA MACHINE
    BRAND, J
    VANBUUREN, S
    VANMULLIGEN, EM
    TIMMERS, T
    GELSEMA, E
    [J]. JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 1994, : 303 - 306
  • [10] Multiple Imputation For Missing Ordinal Data
    Chen, Ling
    Toma-Drane, Mariana
    Valois, Robert F.
    Drane, J. Wanzer
    [J]. JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2005, 4 (01) : 288 - 299