Predicting disease risks from highly imbalanced data using random forest

被引:0
|
作者
Mohammed Khalilia
Sounak Chakraborty
Mihail Popescu
机构
[1] Department of Computer Science,Department of Health Management and Informatics
[2] University of Missouri,undefined
[3] Department of Statistics,undefined
[4] University of Missouri,undefined
[5] University of Missouri,undefined
关键词
Support Vector Machine; Random Forest; Imbalanced Data; Disease Prediction; National Inpatient Sample;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] Predicting the postmortem interval using human intestinal microbiome data and random forest algorithm
    Hu, Lai
    Xing, Yu
    Jiang, Pu
    Gan, Li
    Zhao, Fan
    Peng, Wenli
    Li, Weihan
    Tong, Yanqiu
    Deng, Shixiong
    SCIENCE & JUSTICE, 2021, 61 (05) : 516 - 527
  • [32] Predicting Progression to Clinical Alzheimer's Disease Dementia Using the Random Survival Forest
    Song, Shangchen
    Asken, Breton
    Armstrong, Melissa J.
    Yang, Yang
    Li, Zhigang
    JOURNAL OF ALZHEIMERS DISEASE, 2023, 95 (02) : 535 - 548
  • [33] Predicting asthma using imbalanced data modeling techniques: Evidence from 2019 Michigan BRFSS data
    Budhathoki, Nirajan
    Bhandari, Ramesh
    Bashyal, Suraj
    Lee, Carl
    PLOS ONE, 2023, 18 (12):
  • [34] Imbalanced Data Classification using Random Subspace Method and SMOTE
    Huang, Hsiao-Yun
    Lin, Yi-Jhen
    Chen, Youg-Siang
    Lu, Hung-Yi
    6TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND INTELLIGENT SYSTEMS, AND THE 13TH INTERNATIONAL SYMPOSIUM ON ADVANCED INTELLIGENT SYSTEMS, 2012, : 817 - 820
  • [35] Predicting Bank Financial Failures using Random Forest
    Rustam, Zuherman
    Saragih, Glori Stephani
    2018 INTERNATIONAL WORKSHOP ON BIG DATA AND INFORMATION SECURITY (IWBIS), 2018, : 81 - 86
  • [36] Research on the Classification of High Dimensional Imbalanced Data based on the Optimization of Random Forest Algorithm
    Ma Xiaojuan
    PROCEEDINGS OF 2018 INTERNATIONAL CONFERENCE ON BIG DATA ENGINEERING AND TECHNOLOGY (BDET 2018), 2018, : 60 - 67
  • [37] Alterations to the Bootstrapping Process Within Random Forest: A Case Study on Imbalanced Bioinformatics Data
    Khoshgoftaar, Taghi M.
    Fazelpour, Alireza
    Dittman, David J.
    Napolitano, Amri
    2015 IEEE 16TH INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION, 2015, : 342 - 348
  • [38] Predicting Car Insurance Policies Using Random Forest
    Alshamsi, Asma S.
    2014 10TH INTERNATIONAL CONFERENCE ON INNOVATIONS IN INFORMATION TECHNOLOGY (IIT), 2014, : 128 - 132
  • [39] Predicting IPO initial returns using random forest
    Baba, Boubekeur
    Sevil, Guven
    BORSA ISTANBUL REVIEW, 2020, 20 (01) : 13 - 23
  • [40] Research on the Classification of High Dimensional Imbalanced Data Based on the Optimizational Random Forest Algorithm
    Bo, Su
    PROCEEDINGS OF 2017 9TH INTERNATIONAL CONFERENCE ON MEASURING TECHNOLOGY AND MECHATRONICS AUTOMATION (ICMTMA), 2017, : 228 - 231