Predicting disease risks from highly imbalanced data using random forest

被引:0
|
作者
Mohammed Khalilia
Sounak Chakraborty
Mihail Popescu
机构
[1] Department of Computer Science,Department of Health Management and Informatics
[2] University of Missouri,undefined
[3] Department of Statistics,undefined
[4] University of Missouri,undefined
[5] University of Missouri,undefined
来源
BMC Medical Informatics and Decision Making | / 11卷
关键词
Support Vector Machine; Random Forest; Imbalanced Data; Disease Prediction; National Inpatient Sample;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] Imbalanced data classification based on DB-SLSMOTE and random forest
    Han, Qi
    Yang, Rui
    Wan, Zitong
    Chen, Shaozhi
    Huang, Mengjie
    Wen, Huiqing
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 6271 - 6276
  • [22] Imbalanced educational data classification: an effective approach with resampling and random forest
    Vo Thi Ngoc Chau
    Nguyen Hua Phung
    PROCEEDINGS OF 2013 IEEE RIVF INTERNATIONAL CONFERENCE ON COMPUTING AND COMMUNICATION TECHNOLOGIES: RESEARCH, INNOVATION, AND VISION FOR THE FUTURE (RIVF), 2013, : 135 - 140
  • [23] ENSEMBLE CLASSIFIER WITH RANDOM FOREST ALGORITHM TO DEAL WITH IMBALANCED HEALTHCARE DATA
    Anbarasi, M. S.
    Janani, V.
    2017 INTERNATIONAL CONFERENCE ON INFORMATION COMMUNICATION AND EMBEDDED SYSTEMS (ICICES), 2017,
  • [24] Estimating disease prevalence from drug utilization data using the Random Forest algorithm
    Slobbe, Laurentius C. J.
    Fussenich, Koen
    Wong, Albert
    Boshuizen, Hendriek C.
    Nielen, Markus M. J.
    Polder, Johan J.
    Feenstra, Talitha L.
    van Oers, Hans A. M.
    EUROPEAN JOURNAL OF PUBLIC HEALTH, 2019, 29 (04): : 615 - 621
  • [25] Finding a Disease-Related Gene from Microarray Data using Random Forest
    Nishiwaki, Kazutaka
    Kanamori, Katsutoshi
    Ohwada, Hayato
    2016 IEEE 15TH INTERNATIONAL CONFERENCE ON COGNITIVE INFORMATICS & COGNITIVE COMPUTING (ICCI*CC), 2016, : 542 - 546
  • [26] Predicting hospital associated disability from imbalanced data using supervised learning
    Saarela, Mirka
    Ryynanen, Olli-Pekka
    Ayramo, Sami
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2019, 95 : 88 - 95
  • [27] Distributed Random Forest for Predicting Forest Wildfires Based on Weather Data
    Damasevisius, Robertas
    Maskeliunas, Rytis
    ADVANCED NETWORK TECHNOLOGIES AND INTELLIGENT COMPUTING, ANTIC 2023, PT II, 2024, 2091 : 305 - 320
  • [28] Predicting student dropouts using random forest
    Devi, Kapila
    Ratnoo, Saroj
    JOURNAL OF STATISTICS AND MANAGEMENT SYSTEMS, 2022, 25 (07) : 1579 - 1590
  • [29] Class Weights Random Forest Algorithm for Processing Class Imbalanced Medical Data
    Zhu, Min
    Xia, Jing
    Jin, Xiaoqing
    Yan, Molei
    Cai, Guolong
    Yan, Jing
    Ning, Gangmin
    IEEE ACCESS, 2018, 6 : 4641 - 4652
  • [30] RANDOM FOREST ALGORITHM FOR PREDICTING CHRONIC DIABETES DISEASE
    Subbaiah, S.
    Kavitha, M.
    INTERNATIONAL JOURNAL OF LIFE SCIENCE AND PHARMA RESEARCH, 2020, : 4 - 8