Face quality analysis of single-image super-resolution based on SIFT

被引:0
|
作者
Xiao Hu
Juan Sun
Zhuohao Mai
Shuyi Li
Shaohu Peng
机构
[1] Guangzhou University,School of Mechanical and Electrical Engineering
来源
关键词
Image quality assessment; CNN; Generative adversarial nets; Sparse representation; PCA;
D O I
暂无
中图分类号
学科分类号
摘要
Single-image super-resolution (SISR) aims at improving image quality, and there so far exist many SISR algorithms to hallucinate super-resolution (super-res) image from simulated low-res image. In order to evaluate SISR algorithms, objective image quality assessment (IQA), e.g., full reference IQA and no-reference IQA, and subjective quality are usually estimated. However, the objective IQA usually does not well match with the subjective quality. This paper therefore introduces a new measurement based on SIFT key-points. Both descriptors and locations of SIFT key-points are used to detect the matched SIFT key-points between super-res image and its high-res label image. The more the matched SIFT key-points are, the closer super-res image should be to its high-res label image, that is the SISR algorithm is able to recover more SIFT key-points. Both simulated low-res faces and real low-res face are employed to validate the evaluation strategy. The normalization of the number of SIFT key-points is proposed and mean opinion score from 30 raters are collected to evaluate SISR algorithms. The experimental results show that the objective IQA based on SIFT key-points are able to effectively evaluate SISR algorithms, and can well match with the subjective IQA.
引用
收藏
页码:829 / 837
页数:8
相关论文
共 50 条
  • [31] REGULARIZED SINGLE-IMAGE SUPER-RESOLUTION BASED ON PROGRESSIVE GRADIENT ESTIMATION
    Yu, Lejun
    Wu, Xiaoyu
    Ge, Fengxiang
    Sun, Bo
    He, Jun
    Sablatnig, Robert
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 1985 - 1989
  • [32] Single-image super-resolution via local learning
    Tang, Yi
    Yan, Pingkun
    Yuan, Yuan
    Li, Xuelong
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2011, 2 (01) : 15 - 23
  • [33] Single-Image Super-Resolution Challenges: A Brief Review
    Ye, Shutong
    Zhao, Shengyu
    Hu, Yaocong
    Xie, Chao
    ELECTRONICS, 2023, 12 (13)
  • [34] A Fully Progressive Approach to Single-Image Super-Resolution
    Wang, Yifan
    Perazzi, Federico
    McWilliams, Brian
    Sorkine-Hornung, Alexander
    Sorkine-Hornung, Olga
    Schroers, Christopher
    PROCEEDINGS 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2018, : 977 - 986
  • [35] OPTIMIZED NEIGHBOR EMBEDDINGS FOR SINGLE-IMAGE SUPER-RESOLUTION
    Turkan, Mehmet
    Thoreau, Dominique
    Guillotel, Philippe
    2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 645 - 649
  • [36] Memory-efficient single-image super-resolution
    Chiapputo, Nicholas
    Bailey, Colleen P.
    BIG DATA IV: LEARNING, ANALYTICS, AND APPLICATIONS, 2022, 12097
  • [37] A Machine Learning based Reduced-Reference Image Quality Assessment Method for Single-Image Super-Resolution
    Yang, Liangkang
    Sheng, Yuxia
    Chai, Li
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 3571 - 3576
  • [38] A Systematic Survey of Deep Learning-Based Single-Image Super-Resolution
    Li, Juncheng
    Pei, Zehua
    Li, Wenjie
    Gao, Guangwei
    Wang, Longguang
    Wang, Yingqian
    Zeng, Tieyong
    ACM COMPUTING SURVEYS, 2024, 56 (10)
  • [39] Single-image super-resolution with multilevel residual attention network
    Qin, Ding
    Gu, Xiaodong
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (19): : 15615 - 15628
  • [40] A fast single-image super-resolution method implemented with CUDA
    Yuan Yuan
    Xiaomin Yang
    Wei Wu
    Hu Li
    Yiguang Liu
    Kai Liu
    Journal of Real-Time Image Processing, 2019, 16 : 81 - 97