Face quality analysis of single-image super-resolution based on SIFT

被引:0
|
作者
Xiao Hu
Juan Sun
Zhuohao Mai
Shuyi Li
Shaohu Peng
机构
[1] Guangzhou University,School of Mechanical and Electrical Engineering
来源
关键词
Image quality assessment; CNN; Generative adversarial nets; Sparse representation; PCA;
D O I
暂无
中图分类号
学科分类号
摘要
Single-image super-resolution (SISR) aims at improving image quality, and there so far exist many SISR algorithms to hallucinate super-resolution (super-res) image from simulated low-res image. In order to evaluate SISR algorithms, objective image quality assessment (IQA), e.g., full reference IQA and no-reference IQA, and subjective quality are usually estimated. However, the objective IQA usually does not well match with the subjective quality. This paper therefore introduces a new measurement based on SIFT key-points. Both descriptors and locations of SIFT key-points are used to detect the matched SIFT key-points between super-res image and its high-res label image. The more the matched SIFT key-points are, the closer super-res image should be to its high-res label image, that is the SISR algorithm is able to recover more SIFT key-points. Both simulated low-res faces and real low-res face are employed to validate the evaluation strategy. The normalization of the number of SIFT key-points is proposed and mean opinion score from 30 raters are collected to evaluate SISR algorithms. The experimental results show that the objective IQA based on SIFT key-points are able to effectively evaluate SISR algorithms, and can well match with the subjective IQA.
引用
收藏
页码:829 / 837
页数:8
相关论文
共 50 条
  • [21] FAST SINGLE-IMAGE SUPER-RESOLUTION WITH FILTER SELECTION
    Salvador, Jordi
    Perez-Pellitero, Eduardo
    Kochale, Axel
    2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 640 - 644
  • [22] LOCAL OPERATOR ESTIMATION FOR SINGLE-IMAGE SUPER-RESOLUTION
    Tang, Yi
    Chen, Hong
    PROCEEDINGS OF 2015 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION (ICWAPR), 2015, : 39 - 44
  • [23] Single-image super-resolution based on sparse kernel ridge regression
    Wu, Fanlu
    Wang, Xiangjun
    AOPC 2017: OPTICAL SENSING AND IMAGING TECHNOLOGY AND APPLICATIONS, 2017, 10462
  • [24] Single-Image Super-Resolution based on Regularization with Stationary Gradient Fidelity
    Yu, Lejun
    Cao, Siming
    He, Jun
    Sun, Bo
    Dai, Feng
    2017 10TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI), 2017,
  • [25] An approach based on support vector regression for single-image super-resolution
    Lin, H. J.
    Yuan, Q. P.
    Chen, Z. H.
    Yang, X. P.
    Qu, B. G.
    INFORMATION SCIENCE AND ELECTRONIC ENGINEERING, 2017, : 101 - 106
  • [26] The single-image super-resolution method based on the optimization of neural networks
    Duanmu, Chunjiang
    Lei, Yi
    SECOND TARGET RECOGNITION AND ARTIFICIAL INTELLIGENCE SUMMIT FORUM, 2020, 11427
  • [27] Boosting Regression-Based Single-Image Super-Resolution Reconstruction
    Luo Shuang
    Huang Hui
    Zhang Kaibing
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (08)
  • [28] FRESH-FRI-Based Single-Image Super-Resolution Algorithm
    Wei, Xiaoyao
    Dragotti, Pier Luigi
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (08) : 3723 - 3735
  • [29] Single-Image Super-Resolution Based on Semi-Supervised Learning
    Tang, Yi
    Yuan, Yuan
    Yan, Pingkun
    Li, Xuelong
    Pan, Xiaoli
    Li, Luoqing
    2011 FIRST ASIAN CONFERENCE ON PATTERN RECOGNITION (ACPR), 2011, : 52 - 56
  • [30] Blind Single-Image Super-Resolution Reconstruction Based on Motion Blur
    Qin, Fengqing
    Li, Zhong
    Zhu, Lihong
    You, Yingde
    Cao, Lilan
    ADVANCED RESEARCH ON AUTOMATION, COMMUNICATION, ARCHITECTONICS AND MATERIALS, PTS 1 AND 2, 2011, 225-226 (1-2): : 895 - 899