On a Conjecture of Kemnitz

被引:0
|
作者
Lajos Rónyai
机构
[1] Computer and Automation Institute,
[2] Hungarian Academy of Sciences; Budapest,undefined
[3] Hungary; E-mail: lajos@nyest.ilab.sztaki.hu,undefined
来源
Combinatorica | 2000年 / 20卷
关键词
AMS Subject Classification (1991) Classes:  11B50, 11P21;
D O I
暂无
中图分类号
学科分类号
摘要
-1 integers there is a subsequence of length n whose sum is divisble by n. This result has led to several extensions and generalizations. A multi-dimensional problem from this line of research is the following. Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} stand for the additive group of integers modulo n. Let s(n, d) denote the smallest integer s such that in any sequence of s elements from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} (the direct sum of d copies of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}) there is a subsequence of length n whose sum is 0 in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}. Kemnitz conjectured that s(n, 2) = 4n - 3. In this note we prove that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} holds for every prime p. This implies that the value of s(p, 2) is either 4p-3 or 4p-2. For an arbitrary positive integer n it follows that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}. The proof uses an algebraic approach.
引用
收藏
页码:569 / 573
页数:4
相关论文
共 50 条