-1 integers there is a subsequence of length n whose sum is divisble by n. This result has led to several extensions and generalizations. A multi-dimensional problem from this line of research is the following. Let \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}\end{document} stand for the additive group of integers modulo n. Let s(n, d) denote the smallest integer s such that in any sequence of s elements from \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}\end{document} (the direct sum of d copies of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}\end{document}) there is a subsequence of length n whose sum is 0 in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}\end{document}. Kemnitz conjectured that s(n, 2) = 4n - 3. In this note we prove that \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}\end{document} holds for every prime p. This implies that the value of s(p, 2) is either 4p-3 or 4p-2. For an arbitrary positive integer n it follows that \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}\end{document}. The proof uses an algebraic approach.
机构:
Vienna Univ Technol, Inst Diskrete Math & Geometrie, A-1040 Vienna, AustriaVienna Univ Technol, Inst Diskrete Math & Geometrie, A-1040 Vienna, Austria
Goldstern, Martin
Kellner, Jakob
论文数: 0引用数: 0
h-index: 0
机构:
Univ Vienna, Kurt Godel Res Ctr Math Log, A-1090 Vienna, AustriaVienna Univ Technol, Inst Diskrete Math & Geometrie, A-1040 Vienna, Austria
Kellner, Jakob
Shelah, Saharon
论文数: 0引用数: 0
h-index: 0
机构:
Hebrew Univ Jerusalem, Einstein Inst Math, IL-91904 Jerusalem, Israel
Rutgers State Univ, Dept Math, New Brunswick, NJ 08854 USAVienna Univ Technol, Inst Diskrete Math & Geometrie, A-1040 Vienna, Austria
Shelah, Saharon
Wohofsky, Wolfgang
论文数: 0引用数: 0
h-index: 0
机构:
Vienna Univ Technol, Inst Diskrete Math & Geometrie, A-1040 Vienna, AustriaVienna Univ Technol, Inst Diskrete Math & Geometrie, A-1040 Vienna, Austria
机构:
Univ Lille Nord France, UMR 8163, Savoirs Textes Langage, Villeneuve Dascq, FranceUniv Lille Nord France, UMR 8163, Savoirs Textes Langage, Villeneuve Dascq, France