Kemnitz' conjecture revisited

被引:7
|
作者
Savchev, S [1 ]
Chen, F [1 ]
机构
[1] Emory Univ, Oxford Coll, Oxford, GA 30054 USA
关键词
Kemnitz' conjecture; zero-sums;
D O I
10.1016/j.disc.2005.02.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A conjecture of Kemnitz remained open for some 20 years: each sequence of 4n - 3 lattice points in the plane has a subsequence of length n whose centroid is a lattice point. It was solved independently by Reiher and di Fiore in the autumn of 2003. A refined and more general version of Kemnitz' conjecture is proved in this note. The main result is about sequences of lengths between 3p - 2 and 4p - 3 in the additive group of integer pairs modulo p, for the essential case of an odd prime p. We derive structural information related to their zero sums, implying a variant of the original conjecture for each of the lengths mentioned. The approach is combinatorial. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:196 / 201
页数:6
相关论文
共 50 条
  • [1] On a conjecture of Kemnitz
    Rónyai, L
    COMBINATORICA, 2000, 20 (04) : 569 - 573
  • [2] On a Conjecture of Kemnitz
    Lajos Rónyai
    Combinatorica, 2000, 20 : 569 - 573
  • [3] A variant of Kemnitz conjecture
    Gao, WD
    Thangadurai, R
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2004, 107 (01) : 69 - 86
  • [4] On Kemnitz’ conjecture concerning lattice-points in the plane
    Christian Reiher
    The Ramanujan Journal, 2007, 13 : 333 - 337
  • [5] On Kemnitz' conjecture concerning lattice-points in the plane
    Reiher, Christian
    RAMANUJAN JOURNAL, 2007, 13 (1-3): : 333 - 337
  • [6] JESMANOWICZ' CONJECTURE REVISITED
    Tang, Min
    Yang, Zhi-Juan
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2013, 88 (03) : 486 - 491
  • [7] The Minus Conjecture revisited
    Greither, C.
    Kucera, R.
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2009, 632 : 127 - 142
  • [8] PAINLEVE CONJECTURE REVISITED
    RAMANI, A
    DORIZZI, B
    GRAMMATICOS, B
    PHYSICAL REVIEW LETTERS, 1982, 49 (21) : 1539 - 1541
  • [9] The Mertens conjecture revisited
    Kotnik, Tadej
    te Riele, Herman
    ALGORITHMIC NUMBER THEORY, PROCEEDINGS, 2006, 4076 : 156 - 167
  • [10] The Krzyz conjecture revisited
    Martin, Maria J.
    Sawyer, Eric T.
    Uriarte-Tuero, Ignacio
    Vukotic, Dragan
    ADVANCES IN MATHEMATICS, 2015, 273 : 716 - 745