Raising and Lowering Operators for a Class of Exactly Solvable Quantum Nonlinear Harmonic Oscillators

被引:0
|
作者
Xue-Hong Wang
Yu-Bin Liu
机构
[1] Nankai University,Department of Physics
关键词
Raising and lowering operators; Quantum nonlinear harmonic oscillators;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study a new class of exactly solvable quantum nonlinear harmonic oscillators from the viewpoint of the raising and lowering operators. The energy spectrum for the Hamiltonian and the ground state are also given explicitly.
引用
收藏
页码:2748 / 2756
页数:8
相关论文
共 50 条
  • [32] Quasi-exactly solvable polynomial extensions of the quantum harmonic oscillator
    Quesne, Christiane
    SYMMETRIES IN SCIENCE XVII, 2018, 1071
  • [33] Four kinds of raising and lowering operators of three-dimensional isotropic harmonic oscillators with spin-orbit coupling
    Fu, MH
    Ren, ZZ
    ACTA PHYSICA SINICA, 2004, 53 (05) : 1280 - 1283
  • [34] A quantum exactly solvable nonlinear oscillator related to the isotonic oscillator
    Carinena, J. F.
    Perelomov, A. M.
    Ranada, M. F.
    Santander, M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (08)
  • [35] An exactly solvable three-dimensional nonlinear quantum oscillator
    Schulze-Halberg, A.
    Morris, J. R.
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (11)
  • [36] LOWERING AND RAISING OPERATORS FOR THE FREE MEIXNER CLASS OF ORTHOGONAL POLYNOMIALS
    Lytvynov, Eugene
    Rodionova, Irina
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2009, 12 (03) : 387 - 399
  • [37] Raising and Lowering Operators for Orbital Angular Momentum Quantum Numbers
    Liu, Q. H.
    Xun, D. M.
    Shan, L.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2010, 49 (09) : 2164 - 2171
  • [38] Raising and Lowering Operators for Orbital Angular Momentum Quantum Numbers
    Q. H. Liu
    D. M. Xun
    L. Shan
    International Journal of Theoretical Physics, 2010, 49 : 2164 - 2171
  • [39] A class of solvable coupled nonlinear oscillators with amplitude independent frequencies
    Chandrasekar, V. K.
    Sheeba, Jane H.
    Pradeep, R. Gladwin
    Divyasree, R. S.
    Lakshmanan, M.
    PHYSICS LETTERS A, 2012, 376 (32) : 2188 - 2194
  • [40] NEW CLASS OF CONDITIONALLY EXACTLY SOLVABLE POTENTIALS IN QUANTUM-MECHANICS
    DUTT, R
    KHARE, A
    VARSHNI, YP
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (03): : L107 - L113