A quantum exactly solvable nonlinear oscillator related to the isotonic oscillator

被引:91
|
作者
Carinena, J. F. [1 ,2 ]
Perelomov, A. M. [1 ]
Ranada, M. F. [1 ,2 ]
Santander, M. [3 ]
机构
[1] Univ Zaragoza, Fac Ciencias, Dept Fis Teor, E-50009 Zaragoza, Spain
[2] Univ Zaragoza, Fac Ciencias, IUMA, E-50009 Zaragoza, Spain
[3] Univ Valladolid, Fac Ciencias, Dept Fis Teor, E-47011 Valladolid, Spain
关键词
D O I
10.1088/1751-8113/41/8/085301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A nonpolynomial one-dimensional quantum potential representing an oscillator, which can be considered as placed in the middle between the harmonic oscillator and the isotonic oscillator ( harmonic oscillator with a centripetal barrier), is studied. First the general case, that depends on a parameter a, is considered and then a particular case is studied with great detail. It is proven that it is Schrodinger solvable and then the wavefunctions Psi(n) and the energies E-n of the bound states are explicitly obtained. Finally, it is proven that the solutions determine a family of orthogonal polynomials P-n( x) related to the Hermite polynomials and such that: ( i) every P-n is a linear combination of three Hermite polynomials and ( ii) they are orthogonal with respect to a new measure obtained by modifying the classic Hermite measure.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] An exactly solvable three-dimensional nonlinear quantum oscillator
    Schulze-Halberg, A.
    Morris, J. R.
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (11)
  • [2] On the generalized intelligent states and certain related nonclassical states of a quantum exactly solvable nonlinear oscillator
    Ruby, V. Chithiika
    Senthilvelan, M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (41)
  • [3] Solvable rational extensions of the isotonic oscillator
    Grandati, Yves
    ANNALS OF PHYSICS, 2011, 326 (08) : 2074 - 2090
  • [4] EXACTLY-SOLVABLE CONFINEMENT MODEL OF THE QUANTUM HARMONIC OSCILLATOR
    Jafarov, E. I.
    Nagiyev, S. M.
    MODERN TRENDS IN PHYSICS, 2019, : 245 - 248
  • [5] Exactly solvable chaos in an electromechanical oscillator
    Owens, Benjamin A. M.
    Stahl, Mark T.
    Corron, Ned J.
    Blakely, Jonathan N.
    Illing, Lucas
    CHAOS, 2013, 23 (03)
  • [6] The quantum anharmonic oscillator and quasi-exactly solvable Bose systems
    Dolya, SN
    Zaslavskii, OB
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (41): : L369 - L374
  • [7] Study of the Generalized Quantum Isotonic Nonlinear Oscillator Potential
    Saad, Nasser
    Hall, Richard L.
    Ciftci, Hakan
    Yesiltas, Ozlem
    ADVANCES IN MATHEMATICAL PHYSICS, 2011, 2011
  • [8] Generalized quantum isotonic nonlinear oscillator in d dimensions
    Hall, Richard L.
    Saad, Nasser
    Yesiltas, Ozlem
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (46)
  • [9] Quasi-exactly solvable polynomial extensions of the quantum harmonic oscillator
    Quesne, Christiane
    SYMMETRIES IN SCIENCE XVII, 2018, 1071
  • [10] Approximating an Exactly Solvable Chaotic Oscillator Using a Colpitts Oscillator Circuit
    Rhea, Benjamin K.
    Harrison, R. Chase
    Werner, Frank T.
    Perkins, Edmon
    Dean, Robert N.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2021, 68 (03) : 1028 - 1032