A search for quantum coin-flipping protocols using optimization techniques

被引:0
|
作者
Ashwin Nayak
Jamie Sikora
Levent Tunçel
机构
[1] University of Waterloo,Department of Combinatorics and Optimization, and Institute for Quantum Computing
[2] National University of Singapore,Centre for Quantum Technologies
[3] UMI,MajuLab CNRS
[4] University of Waterloo,UNS
来源
Mathematical Programming | 2016年 / 156卷
关键词
Semidefinite programming; Quantum coin-flipping; Computational optimization; 90-08 Computational methods; 90C22 Semidefinite programming; 81P68 Quantum computation and quantum cryptography;
D O I
暂无
中图分类号
学科分类号
摘要
Coin-flipping is a cryptographic task in which two physically separated, mistrustful parties wish to generate a fair coin-flip by communicating with each other. Chailloux and Kerenidis (2009) designed quantum protocols that guarantee coin-flips with near optimal bias away from uniform, even when one party deviates arbitrarily from the protocol. The probability of any outcome in these protocols is provably at most 12+δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tfrac{1}{\sqrt{2}} + \delta $$\end{document} for any given δ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta > 0$$\end{document}. However, no explicit description of these protocols is known; in fact, the smallest bias achieved by known explicit protocols is 1/4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/4$$\end{document} (Ambainis 2001). We take a computational optimization approach, based mostly on convex optimization, to the search for simple and explicit quantum strong coin-flipping protocols. We present a search algorithm to identify protocols with low bias within a natural class, protocols based on bit-commitment (Nayak and Shor in Phys Rev A 67(1):012304, 2003). The techniques we develop enable a computational search for protocols given by a mesh over the corresponding parameter space. We conduct searches for four-round and six-round protocols with bias below 0.2499\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.2499$$\end{document} each of varying dimension which include the best known explicit protocol (with bias 1/4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/4$$\end{document}). After checking over 1016\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{16}$$\end{document} protocols, a task which would be infeasible using semidefinite programming alone, we conjecture that the smallest achievable bias within the family of protocols we consider is 1/4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/4$$\end{document}.
引用
收藏
页码:581 / 613
页数:32
相关论文
共 50 条
  • [41] Cheat-sensitive coin flipping and quantum gambling
    Yuyang Han
    Quantum Information Processing, 21
  • [42] A Lower Bound for Adaptively-Secure Collective Coin Flipping Protocols
    Kalai, Yael Tauman
    Komargodski, Ilan
    Raz, Ran
    COMBINATORICA, 2021, 41 (01) : 75 - 98
  • [43] Cheat-sensitive coin flipping and quantum gambling
    Han, Yuyang
    QUANTUM INFORMATION PROCESSING, 2022, 21 (05)
  • [44] Fair loss-tolerant quantum coin flipping
    Berlin, Guido
    Brassard, Gilles
    Bussieres, Felix
    Godbout, Nicolas
    PHYSICAL REVIEW A, 2009, 80 (06):
  • [45] Bit-commitment-based quantum coin flipping
    Nayak, A
    Shor, P
    PHYSICAL REVIEW A, 2003, 67 (01):
  • [46] A Lower Bound for Adaptively-Secure Collective Coin Flipping Protocols
    Yael Tauman Kalai
    Ilan Komargodski
    Ran Raz
    Combinatorica, 2021, 41 : 75 - 98
  • [47] Quantum coin flipping secure against channel noises
    Zhang, Sheng
    Zhang, Yuexin
    PHYSICAL REVIEW A, 2015, 92 (02):
  • [48] Dilemma that cannot be resolved by biased quantum coin flipping
    Ishizaka, Satoshi
    PHYSICAL REVIEW LETTERS, 2008, 100 (07)
  • [49] Fully Distrustful Quantum Bit Commitment and Coin Flipping
    Silman, J.
    Chailloux, A.
    Aharon, N.
    Kerenidis, I.
    Pironio, S.
    Massar, S.
    PHYSICAL REVIEW LETTERS, 2011, 106 (22)
  • [50] Bit-commitment-based quantum coin flipping
    Nayak, Ashwin
    Shor, Peter
    Physical Review A - Atomic, Molecular, and Optical Physics, 2003, 67 (01): : 1 - 012304