A search for quantum coin-flipping protocols using optimization techniques

被引:0
|
作者
Ashwin Nayak
Jamie Sikora
Levent Tunçel
机构
[1] University of Waterloo,Department of Combinatorics and Optimization, and Institute for Quantum Computing
[2] National University of Singapore,Centre for Quantum Technologies
[3] UMI,MajuLab CNRS
[4] University of Waterloo,UNS
来源
Mathematical Programming | 2016年 / 156卷
关键词
Semidefinite programming; Quantum coin-flipping; Computational optimization; 90-08 Computational methods; 90C22 Semidefinite programming; 81P68 Quantum computation and quantum cryptography;
D O I
暂无
中图分类号
学科分类号
摘要
Coin-flipping is a cryptographic task in which two physically separated, mistrustful parties wish to generate a fair coin-flip by communicating with each other. Chailloux and Kerenidis (2009) designed quantum protocols that guarantee coin-flips with near optimal bias away from uniform, even when one party deviates arbitrarily from the protocol. The probability of any outcome in these protocols is provably at most 12+δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tfrac{1}{\sqrt{2}} + \delta $$\end{document} for any given δ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta > 0$$\end{document}. However, no explicit description of these protocols is known; in fact, the smallest bias achieved by known explicit protocols is 1/4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/4$$\end{document} (Ambainis 2001). We take a computational optimization approach, based mostly on convex optimization, to the search for simple and explicit quantum strong coin-flipping protocols. We present a search algorithm to identify protocols with low bias within a natural class, protocols based on bit-commitment (Nayak and Shor in Phys Rev A 67(1):012304, 2003). The techniques we develop enable a computational search for protocols given by a mesh over the corresponding parameter space. We conduct searches for four-round and six-round protocols with bias below 0.2499\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.2499$$\end{document} each of varying dimension which include the best known explicit protocol (with bias 1/4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/4$$\end{document}). After checking over 1016\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{16}$$\end{document} protocols, a task which would be infeasible using semidefinite programming alone, we conjecture that the smallest achievable bias within the family of protocols we consider is 1/4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/4$$\end{document}.
引用
收藏
页码:581 / 613
页数:32
相关论文
共 50 条
  • [31] Dynamics of production of sexual forms in aphids:: Theoretical and experimental evidence for adaptive "coin-flipping" plasticity
    Halkett, F
    Harrington, R
    Hullé, M
    Kindlmann, P
    Menu, F
    Rispe, C
    Plantegenest, M
    AMERICAN NATURALIST, 2004, 163 (06): : E112 - E125
  • [32] Unconditionally secure quantum coin flipping
    He, Guang Ping
    RESULTS IN PHYSICS, 2023, 48
  • [33] The Impossibility of Efficient Quantum Weak Coin Flipping
    Miller, Carl A.
    PROCEEDINGS OF THE 52ND ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '20), 2020, : 916 - 929
  • [34] Experimental plug and play quantum coin flipping
    Pappa, Anna
    Jouguet, Paul
    Lawson, Thomas
    Chailloux, Andre
    Legre, Matthieu
    Trinkler, Patrick
    Kerenidis, Iordanis
    Diamanti, Eleni
    NATURE COMMUNICATIONS, 2014, 5
  • [35] Quantum Coin-Flipping-Based Authentication
    Rass, Stefan
    Schartner, Peter
    Greiler, Michaela
    2009 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, VOLS 1-8, 2009, : 1024 - 1028
  • [36] Quantum weak coin flipping with a single photon
    Bozzio, Mathieu
    Chabaud, Ulysse
    Kerenidis, Iordanis
    Diamanti, Eleni
    PHYSICAL REVIEW A, 2020, 102 (02)
  • [37] Loss-Tolerant Quantum Coin Flipping
    Berlin, Guido
    Brassard, Gilles
    Bussieres, Felix
    Godbout, Nicolas
    SECOND INTERNATIONAL CONFERENCE ON QUANTUM-, NANO- AND MICRO-TECHNOLOGIES: ICQNM 2008, PROCEEDINGS, 2008, : 1 - +
  • [38] Experimental plug and play quantum coin flipping
    Anna Pappa
    Paul Jouguet
    Thomas Lawson
    André Chailloux
    Matthieu Legré
    Patrick Trinkler
    Iordanis Kerenidis
    Eleni Diamanti
    Nature Communications, 5
  • [39] Tight Bounds for Classical and Quantum Coin Flipping
    Haenggi, Esther
    Wullschleger, Juerg
    THEORY OF CRYPTOGRAPHY, 2011, 6597 : 468 - +
  • [40] ADAPTIVE COIN-FLIPPING - A DECISION-THEORETIC EXAMINATION OF NATURAL-SELECTION FOR RANDOM INDIVIDUAL VARIATION
    COOPER, WS
    KAPLAN, RH
    JOURNAL OF THEORETICAL BIOLOGY, 1982, 94 (01) : 135 - 151