A search for quantum coin-flipping protocols using optimization techniques

被引:0
|
作者
Ashwin Nayak
Jamie Sikora
Levent Tunçel
机构
[1] University of Waterloo,Department of Combinatorics and Optimization, and Institute for Quantum Computing
[2] National University of Singapore,Centre for Quantum Technologies
[3] UMI,MajuLab CNRS
[4] University of Waterloo,UNS
来源
Mathematical Programming | 2016年 / 156卷
关键词
Semidefinite programming; Quantum coin-flipping; Computational optimization; 90-08 Computational methods; 90C22 Semidefinite programming; 81P68 Quantum computation and quantum cryptography;
D O I
暂无
中图分类号
学科分类号
摘要
Coin-flipping is a cryptographic task in which two physically separated, mistrustful parties wish to generate a fair coin-flip by communicating with each other. Chailloux and Kerenidis (2009) designed quantum protocols that guarantee coin-flips with near optimal bias away from uniform, even when one party deviates arbitrarily from the protocol. The probability of any outcome in these protocols is provably at most 12+δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tfrac{1}{\sqrt{2}} + \delta $$\end{document} for any given δ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta > 0$$\end{document}. However, no explicit description of these protocols is known; in fact, the smallest bias achieved by known explicit protocols is 1/4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/4$$\end{document} (Ambainis 2001). We take a computational optimization approach, based mostly on convex optimization, to the search for simple and explicit quantum strong coin-flipping protocols. We present a search algorithm to identify protocols with low bias within a natural class, protocols based on bit-commitment (Nayak and Shor in Phys Rev A 67(1):012304, 2003). The techniques we develop enable a computational search for protocols given by a mesh over the corresponding parameter space. We conduct searches for four-round and six-round protocols with bias below 0.2499\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.2499$$\end{document} each of varying dimension which include the best known explicit protocol (with bias 1/4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/4$$\end{document}). After checking over 1016\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{16}$$\end{document} protocols, a task which would be infeasible using semidefinite programming alone, we conjecture that the smallest achievable bias within the family of protocols we consider is 1/4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/4$$\end{document}.
引用
收藏
页码:581 / 613
页数:32
相关论文
共 50 条
  • [1] A search for quantum coin-flipping protocols using optimization techniques
    Nayak, Ashwin
    Sikora, Jamie
    Tuncel, Levent
    MATHEMATICAL PROGRAMMING, 2016, 156 (1-2) : 581 - 613
  • [2] Large family of quantum weak coin-flipping protocols
    Mochon, C
    PHYSICAL REVIEW A, 2005, 72 (02):
  • [3] Family of loss-tolerant quantum coin-flipping protocols
    Aharon, N.
    Massar, S.
    Silman, J.
    PHYSICAL REVIEW A, 2010, 82 (05):
  • [4] Quantum walks: Decoherence and coin-flipping games
    Romanelli, Alejandro
    Hernandez, Guzman
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2011, 390 (06) : 1209 - 1220
  • [5] Quantum-Secure Coin-Flipping and Applications
    Damgard, Ivan
    Lunemann, Carolin
    ADVANCES IN CRYPTOLOGY - ASIACRYPT 2009, 2009, 5912 : 52 - 69
  • [6] Quantum weak coin-flipping with bias of 0.192
    Mochon, C
    45TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2004, : 2 - 11
  • [7] Coin-Flipping Neural Networks
    Sieradzki, Yuval
    Hodos, Nitzan
    Yehuda, Gal
    Schuster, Assaf
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [8] Indifference, indecision, and coin-flipping
    Mc Kiernan, Daniel Kian
    JOURNAL OF MATHEMATICAL ECONOMICS, 2012, 48 (04) : 237 - 246
  • [9] Fully Simulatable Quantum-Secure Coin-Flipping and Applications
    Lunemann, Carolin
    Nielsen, Jesper Buus
    PROGRESS IN CRYPTOLOGY - AFRICACRYPT 2011, 2011, 6737 : 21 - 40
  • [10] Adaptively Secure Coin-Flipping, Revisited
    Goldwasser, Shafi
    Kalai, Yael Tauman
    Park, Sunoo
    AUTOMATA, LANGUAGES, AND PROGRAMMING, PT II, 2015, 9135 : 663 - 674