Anisotropic tubular neighborhoods of sets

被引:0
|
作者
Antonin Chambolle
Luca Lussardi
Elena Villa
机构
[1] Ceremade,Dipartimento di Scienze Matematiche “G.L. Lagrange”
[2] CNRS and Université de Paris-Dauphine PSL,Dipartimento di Matematica “F. Enriques”
[3] Place de Lattre de Tassigny,undefined
[4] Politecnico di Torino,undefined
[5] Università degli Studi di Milano,undefined
来源
Mathematische Zeitschrift | 2021年 / 299卷
关键词
Rectifiability; anisotropic outer Minkowski content; viscosity solutions; 28A75; 35D40;
D O I
暂无
中图分类号
学科分类号
摘要
Let E⊂RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E \subset {{\mathbb {R}}}^N$$\end{document} be a compact set and C⊂RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C\subset {{\mathbb {R}}}^N$$\end{document} be a convex body with 0∈intC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\in \mathrm{int}\,C$$\end{document}. We prove that the topological boundary of the anisotropic enlargement E+rC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E+rC$$\end{document} is contained in a finite union of Lipschitz surfaces. We also investigate the regularity of the volume function VE(r):=|E+rC|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_E(r):=|E+rC|$$\end{document} proving a formula for the right and the left derivatives at any r>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r>0$$\end{document} which implies that VE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_E$$\end{document} is of class C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document} up to a countable set completely characterized. Moreover, some properties on the second derivative of VE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_E$$\end{document} are proved.
引用
收藏
页码:1257 / 1274
页数:17
相关论文
共 50 条
  • [41] Tubular neighborhoods of orbits of power-logarithmic germs
    P. Mardešić
    M. Resman
    J.-P. Rolin
    V. Županović
    Journal of Dynamics and Differential Equations, 2021, 33 : 395 - 443
  • [42] TUBULAR-NEIGHBORHOODS OF HILBERT-CUBE MANIFOLDS
    NOWELL, WO
    PACIFIC JOURNAL OF MATHEMATICS, 1979, 83 (01) : 231 - 252
  • [43] Tubular neighborhoods in the sub-Riemannian Heisenberg groups
    Ritore, Manuel
    ADVANCES IN CALCULUS OF VARIATIONS, 2021, 14 (01) : 1 - 36
  • [44] Tubular neighborhoods of orbits of power-logarithmic germs
    Mardesic, P.
    Resman, M.
    Rolin, J. -P.
    Zupanovic, V.
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2021, 33 (01) : 395 - 443
  • [45] THE POLYA ALGORITHM ON TUBULAR SETS
    MARANO, M
    HUOTARI, R
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1994, 54 (02) : 151 - 157
  • [47] New view for approximating rough sets using neighborhoods
    Shokry M.
    Elshenawy A.
    Advances in Information Sciences and Service Sciences, 2011, 3 (02): : 160 - 169
  • [48] KAPPA-FACTORS AND NEIGHBORHOODS OF INDEPENDENT SETS IN GRAPHS
    WOODALL, DR
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1990, 41 : 385 - 392
  • [49] Interval neutrosophic covering rough sets based on neighborhoods
    Xu, Dongsheng
    Xian, Huaxiang
    Lu, Xiewen
    AIMS MATHEMATICS, 2021, 6 (04): : 3772 - 3787
  • [50] Curvature bounds for neighborhoods of self-similar sets
    Winter, Steffen
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2011, 52 (02): : 205 - 226