Anisotropic tubular neighborhoods of sets

被引:0
|
作者
Antonin Chambolle
Luca Lussardi
Elena Villa
机构
[1] Ceremade,Dipartimento di Scienze Matematiche “G.L. Lagrange”
[2] CNRS and Université de Paris-Dauphine PSL,Dipartimento di Matematica “F. Enriques”
[3] Place de Lattre de Tassigny,undefined
[4] Politecnico di Torino,undefined
[5] Università degli Studi di Milano,undefined
来源
Mathematische Zeitschrift | 2021年 / 299卷
关键词
Rectifiability; anisotropic outer Minkowski content; viscosity solutions; 28A75; 35D40;
D O I
暂无
中图分类号
学科分类号
摘要
Let E⊂RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E \subset {{\mathbb {R}}}^N$$\end{document} be a compact set and C⊂RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C\subset {{\mathbb {R}}}^N$$\end{document} be a convex body with 0∈intC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\in \mathrm{int}\,C$$\end{document}. We prove that the topological boundary of the anisotropic enlargement E+rC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E+rC$$\end{document} is contained in a finite union of Lipschitz surfaces. We also investigate the regularity of the volume function VE(r):=|E+rC|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_E(r):=|E+rC|$$\end{document} proving a formula for the right and the left derivatives at any r>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r>0$$\end{document} which implies that VE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_E$$\end{document} is of class C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document} up to a countable set completely characterized. Moreover, some properties on the second derivative of VE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_E$$\end{document} are proved.
引用
收藏
页码:1257 / 1274
页数:17
相关论文
共 50 条
  • [31] Representation of graphs based on neighborhoods and soft sets
    Muhammad Irfan Ali
    Muhammad. Shabir
    Feng Feng
    International Journal of Machine Learning and Cybernetics, 2017, 8 : 1525 - 1535
  • [32] Odd and even dominating sets with open neighborhoods
    Goldwasser, John L.
    Klostermeyer, William F.
    ARS COMBINATORIA, 2007, 83 : 229 - 247
  • [33] Path Factors and Neighborhoods of Independent Sets in Graphs
    Si-zhong ZHOU
    Acta Mathematicae Applicatae Sinica, 2023, 39 (02) : 232 - 238
  • [34] Path Factors and Neighborhoods of Independent Sets in Graphs
    Si-zhong Zhou
    Acta Mathematicae Applicatae Sinica, English Series, 2023, 39 : 232 - 238
  • [35] ON SECTION SETS OF NEIGHBORHOODS OF GRAPHS OF SEMICONTINUOUS FUNCTIONS
    Pokorny, Dusan
    REAL ANALYSIS EXCHANGE, 2010, 36 (02) : 471 - 478
  • [36] Shape-invariant Neighborhoods of Nonsaddle Sets
    Shoptrajanov, Martin
    Shekutkovski, Nikita
    REGULAR & CHAOTIC DYNAMICS, 2020, 25 (06): : 581 - 596
  • [37] Representation of graphs based on neighborhoods and soft sets
    Ali, Muhammad Irfan
    Shabir, Muhammad.
    Feng, Feng
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2017, 8 (05) : 1525 - 1535
  • [38] Shape-invariant Neighborhoods of Nonsaddle Sets
    Martin Shoptrajanov
    Nikita Shekutkovski
    Regular and Chaotic Dynamics, 2020, 25 : 581 - 596
  • [39] Path Factors and Neighborhoods of Independent Sets in Graphs
    Zhou, Si-zhong
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2023, 39 (02): : 232 - 238
  • [40] QUASI-UNIFORMITIES DEFINED BY SETS OF NEIGHBORHOODS
    KUNZI, HPA
    ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1992, 659 : 125 - 137