Anisotropic tubular neighborhoods of sets

被引:0
|
作者
Antonin Chambolle
Luca Lussardi
Elena Villa
机构
[1] Ceremade,Dipartimento di Scienze Matematiche “G.L. Lagrange”
[2] CNRS and Université de Paris-Dauphine PSL,Dipartimento di Matematica “F. Enriques”
[3] Place de Lattre de Tassigny,undefined
[4] Politecnico di Torino,undefined
[5] Università degli Studi di Milano,undefined
来源
Mathematische Zeitschrift | 2021年 / 299卷
关键词
Rectifiability; anisotropic outer Minkowski content; viscosity solutions; 28A75; 35D40;
D O I
暂无
中图分类号
学科分类号
摘要
Let E⊂RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E \subset {{\mathbb {R}}}^N$$\end{document} be a compact set and C⊂RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C\subset {{\mathbb {R}}}^N$$\end{document} be a convex body with 0∈intC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\in \mathrm{int}\,C$$\end{document}. We prove that the topological boundary of the anisotropic enlargement E+rC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E+rC$$\end{document} is contained in a finite union of Lipschitz surfaces. We also investigate the regularity of the volume function VE(r):=|E+rC|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_E(r):=|E+rC|$$\end{document} proving a formula for the right and the left derivatives at any r>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r>0$$\end{document} which implies that VE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_E$$\end{document} is of class C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document} up to a countable set completely characterized. Moreover, some properties on the second derivative of VE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_E$$\end{document} are proved.
引用
收藏
页码:1257 / 1274
页数:17
相关论文
共 50 条