On the Asymptotic Behavior of Distributions of First-Passage Times, II

被引:0
|
作者
A. A. Borovkov
机构
[1] Russian Academy of Sciences,S. L. Sobolev Mathematics Institute
[2] Siberian Division,undefined
来源
Mathematical Notes | 2004年 / 75卷
关键词
random walk; first-passage time; asymptotics of the distribution of first-passage times; semiexponential distribution; subexponential distribution;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the asymptotic behavior of and estimates for the distribution of first-passage times for a random walk with nonzero drift are obtained in the case of passage of zero level (in both directions).
引用
收藏
页码:322 / 330
页数:8
相关论文
共 50 条
  • [21] Asymptotics for First-Passage Times on Delaunay Triangulations
    Pimentel, Leandro P. R.
    COMBINATORICS PROBABILITY & COMPUTING, 2011, 20 (03): : 435 - 453
  • [22] Simulation of Brownian motion at first-passage times
    Burq, Zaeern A.
    Jones, Owen D.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2008, 77 (01) : 64 - 71
  • [23] First-passage times of regime switching models
    Hieber, Peter
    STATISTICS & PROBABILITY LETTERS, 2014, 92 : 148 - 157
  • [24] Controls that expedite first-passage times in disordered systems
    Holl, Marc
    Nissan, Alon
    Berkowitz, Brian
    Barkai, Eli
    PHYSICAL REVIEW E, 2023, 108 (03)
  • [25] Reaction paths based on mean first-passage times
    Park, S
    Sener, MK
    Lu, DY
    Schulten, K
    JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (03): : 1313 - 1319
  • [26] Sublinear variance in first-passage percolation for general distributions
    Damron, Michael
    Hanson, Jack
    Sosoe, Philippe
    PROBABILITY THEORY AND RELATED FIELDS, 2015, 163 (1-2) : 223 - 258
  • [27] First-passage time distributions for subdiffusion in confined geometry
    Condamin, S.
    Benichou, O.
    Klafter, J.
    PHYSICAL REVIEW LETTERS, 2007, 98 (25)
  • [28] Simulation of First-Passage Times for Alternating Brownian Motions
    A. Di Crescenzo
    E. Di Nardo
    L. M. Ricciardi
    Methodology and Computing in Applied Probability, 2005, 7 : 161 - 181
  • [29] Extreme first-passage times for random walks on networks
    Lawley, Sean D.
    PHYSICAL REVIEW E, 2020, 102 (06)
  • [30] Transitions for exceptional times in dynamical first-passage percolation
    Damron, Michael
    Hanson, Jack
    Harper, David
    Lam, Wai-Kit
    PROBABILITY THEORY AND RELATED FIELDS, 2023, 39 (03): : 499 - 502