On a closed connected oriented manifold M we study the space M‖(M)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal {M}_\Vert (M)$$\end{document} of all Riemannian metrics which admit a non-zero parallel spinor on the universal covering. Such metrics are Ricci-flat, and all known Ricci-flat metrics are of this form. We show the following: The space M‖(M)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal {M}_\Vert (M)$$\end{document} is a smooth submanifold of the space of all metrics and its premoduli space is a smooth finite-dimensional manifold. The holonomy group is locally constant on M‖(M)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal {M}_\Vert (M)$$\end{document}. If M is spin, then the dimension of the space of parallel spinors is a locally constant function on M‖(M)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal {M}_\Vert (M)$$\end{document}.
机构:
Department of Mathematics, Capital Normal University
Department of Mathematics, University of California at Los AngelesDepartment of Mathematics, Capital Normal University
Ke Feng LIU
Xiao Kui YANG
论文数: 0引用数: 0
h-index: 0
机构:
Morningside Center of Mathematics, Institute of Mathematics, Hua Loo-Keng center of Mathematical Sciences, Academy of Mathematics and Systems Science, Chinese Academy ofDepartment of Mathematics, Capital Normal University
机构:
Department of Mathematics, Capital Normal University
Department of Mathematics, University of California at Los AngelesDepartment of Mathematics, Capital Normal University
Ke Feng LIU
Xiao Kui YANG
论文数: 0引用数: 0
h-index: 0
机构:
Morningside Center of Mathematics, Institute of Mathematics, Hua Loo-Keng center of Mathematical Sciences, Academy of Mathematics and Systems Science, Chinese Academy of SciencesDepartment of Mathematics, Capital Normal University