Holonomy rigidity for Ricci-flat metrics

被引:0
|
作者
Bernd Ammann
Klaus Kröncke
Hartmut Weiss
Frederik Witt
机构
[1] Universität Regensburg,Fakultät für Mathematik
[2] Universität Hamburg,Fachbereich Mathematik
[3] Universität Kiel,Mathematisches Seminar
[4] Universität Stuttgart,Institut für Geometrie und Topologie
来源
Mathematische Zeitschrift | 2019年 / 291卷
关键词
Ricci-flat Metrics; Full Holonomy Group; Parallel Spins; Finite Dimensional Smooth Manifold; Holonomy Reduction;
D O I
暂无
中图分类号
学科分类号
摘要
On a closed connected oriented manifold M we study the space M‖(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}_\Vert (M)$$\end{document} of all Riemannian metrics which admit a non-zero parallel spinor on the universal covering. Such metrics are Ricci-flat, and all known Ricci-flat metrics are of this form. We show the following: The space M‖(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}_\Vert (M)$$\end{document} is a smooth submanifold of the space of all metrics and its premoduli space is a smooth finite-dimensional manifold. The holonomy group is locally constant on M‖(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}_\Vert (M)$$\end{document}. If M is spin, then the dimension of the space of parallel spinors is a locally constant function on M‖(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}_\Vert (M)$$\end{document}.
引用
收藏
页码:303 / 311
页数:8
相关论文
共 50 条