On a closed connected oriented manifold M we study the space M‖(M)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal {M}_\Vert (M)$$\end{document} of all Riemannian metrics which admit a non-zero parallel spinor on the universal covering. Such metrics are Ricci-flat, and all known Ricci-flat metrics are of this form. We show the following: The space M‖(M)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal {M}_\Vert (M)$$\end{document} is a smooth submanifold of the space of all metrics and its premoduli space is a smooth finite-dimensional manifold. The holonomy group is locally constant on M‖(M)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal {M}_\Vert (M)$$\end{document}. If M is spin, then the dimension of the space of parallel spinors is a locally constant function on M‖(M)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal {M}_\Vert (M)$$\end{document}.
机构:
Univ Paris Saclay, CNRS, Lab Math Orsay, F-91405 Orsay, France
Univ Nacl Rosario, CONICET, Rosario, ArgentinaUniv Milano Bicocca, Dipartimento Matemat & Applicaz, Via Cozzi 55, I-20125 Milan, Italy
del Barco, Viviana
Rossi, Federico A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Milano Bicocca, Dipartimento Matemat & Applicaz, Via Cozzi 55, I-20125 Milan, ItalyUniv Milano Bicocca, Dipartimento Matemat & Applicaz, Via Cozzi 55, I-20125 Milan, Italy
机构:
Indiana Univ, Purdue Univ Indianapolis, Dept Math Sci, Indianapolis, IN 46202 USAIndiana Univ, Purdue Univ Indianapolis, Dept Math Sci, Indianapolis, IN 46202 USA
Marcal, P. A. T. R. I. C. I. A.
Shen, Z. H. O. N. G. M. I. N.
论文数: 0引用数: 0
h-index: 0
机构:
Indiana Univ, Purdue Univ Indianapolis, Dept Math Sci, Indianapolis, IN 46202 USAIndiana Univ, Purdue Univ Indianapolis, Dept Math Sci, Indianapolis, IN 46202 USA