Holonomy rigidity for Ricci-flat metrics

被引:0
|
作者
Bernd Ammann
Klaus Kröncke
Hartmut Weiss
Frederik Witt
机构
[1] Universität Regensburg,Fakultät für Mathematik
[2] Universität Hamburg,Fachbereich Mathematik
[3] Universität Kiel,Mathematisches Seminar
[4] Universität Stuttgart,Institut für Geometrie und Topologie
来源
Mathematische Zeitschrift | 2019年 / 291卷
关键词
Ricci-flat Metrics; Full Holonomy Group; Parallel Spins; Finite Dimensional Smooth Manifold; Holonomy Reduction;
D O I
暂无
中图分类号
学科分类号
摘要
On a closed connected oriented manifold M we study the space M‖(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}_\Vert (M)$$\end{document} of all Riemannian metrics which admit a non-zero parallel spinor on the universal covering. Such metrics are Ricci-flat, and all known Ricci-flat metrics are of this form. We show the following: The space M‖(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}_\Vert (M)$$\end{document} is a smooth submanifold of the space of all metrics and its premoduli space is a smooth finite-dimensional manifold. The holonomy group is locally constant on M‖(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}_\Vert (M)$$\end{document}. If M is spin, then the dimension of the space of parallel spinors is a locally constant function on M‖(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}_\Vert (M)$$\end{document}.
引用
收藏
页码:303 / 311
页数:8
相关论文
共 50 条
  • [21] METHODS OF HOLONOMY THEORY FOR RICCI-FLAT RIEMANNIAN-MANIFOLDS
    MCINNES, B
    JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (04) : 888 - 896
  • [22] Diagram involutions and homogeneous Ricci-flat metrics
    Conti, Diego
    del Barco, Viviana
    Rossi, Federico A.
    MANUSCRIPTA MATHEMATICA, 2021, 165 (3-4) : 381 - 413
  • [23] Diagram involutions and homogeneous Ricci-flat metrics
    Diego Conti
    Viviana del Barco
    Federico A. Rossi
    manuscripta mathematica, 2021, 165 : 381 - 413
  • [24] Two conjectures on Ricci-flat Kahler metrics
    Loi, Andrea
    Salis, Filippo
    Zuddas, Fabio
    MATHEMATISCHE ZEITSCHRIFT, 2018, 290 (1-2) : 599 - 613
  • [25] RICCI-FLAT FINSLER METRICS BY WARPED PRODUCT
    Marcal, P. A. T. R. I. C. I. A.
    Shen, Z. H. O. N. G. M. I. N.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, : 2169 - 2183
  • [26] Ricci-flat Kahler metrics on canonical bundles
    Bielawski, R
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2002, 132 : 471 - 479
  • [27] Linear and dynamical stability of Ricci-flat metrics
    Sesum, Natasa
    DUKE MATHEMATICAL JOURNAL, 2006, 133 (01) : 1 - 26
  • [28] Dynamical stability and instability of Ricci-flat metrics
    Robert Haslhofer
    Reto Müller
    Mathematische Annalen, 2014, 360 : 547 - 553
  • [29] A rigidity theorem for Ricci flat metrics
    Hwang, SS
    GEOMETRIAE DEDICATA, 1998, 71 (01) : 5 - 17
  • [30] A Rigidity Theorem for Ricci Flat Metrics
    Seungsu Hwang
    Geometriae Dedicata, 1998, 71 : 5 - 17