Holonomy rigidity for Ricci-flat metrics

被引:0
|
作者
Bernd Ammann
Klaus Kröncke
Hartmut Weiss
Frederik Witt
机构
[1] Universität Regensburg,Fakultät für Mathematik
[2] Universität Hamburg,Fachbereich Mathematik
[3] Universität Kiel,Mathematisches Seminar
[4] Universität Stuttgart,Institut für Geometrie und Topologie
来源
Mathematische Zeitschrift | 2019年 / 291卷
关键词
Ricci-flat Metrics; Full Holonomy Group; Parallel Spins; Finite Dimensional Smooth Manifold; Holonomy Reduction;
D O I
暂无
中图分类号
学科分类号
摘要
On a closed connected oriented manifold M we study the space M‖(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}_\Vert (M)$$\end{document} of all Riemannian metrics which admit a non-zero parallel spinor on the universal covering. Such metrics are Ricci-flat, and all known Ricci-flat metrics are of this form. We show the following: The space M‖(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}_\Vert (M)$$\end{document} is a smooth submanifold of the space of all metrics and its premoduli space is a smooth finite-dimensional manifold. The holonomy group is locally constant on M‖(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}_\Vert (M)$$\end{document}. If M is spin, then the dimension of the space of parallel spinors is a locally constant function on M‖(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}_\Vert (M)$$\end{document}.
引用
收藏
页码:303 / 311
页数:8
相关论文
共 50 条
  • [1] Holonomy rigidity for Ricci-flat metrics
    Ammann, Bernd
    Kroencke, Klaus
    Weiss, Hartmut
    Witt, Frederik
    MATHEMATISCHE ZEITSCHRIFT, 2019, 291 (1-2) : 303 - 311
  • [2] Ricci-flat deformations of metrics with exceptional holonomy
    Nordstroem, Johannes
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2013, 45 : 1004 - 1018
  • [3] Ricci-flat holonomy: A classification
    Armstrong, Stuart
    JOURNAL OF GEOMETRY AND PHYSICS, 2007, 57 (06) : 1457 - 1475
  • [4] Some Ricci-flat (α, β)-metrics
    Sevim, Esra Sengelen
    Ulgen, Semail
    PERIODICA MATHEMATICA HUNGARICA, 2016, 72 (02) : 151 - 157
  • [5] Ricci-flat Douglas (α, β)-metrics
    Tian, Yanfang
    Cheng, Xinyue
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2012, 30 (01) : 20 - 32
  • [6] Stability of the Ricci flow at Ricci-flat metrics
    Guenther, C
    Isenberg, J
    Knopf, D
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2002, 10 (04) : 741 - 777
  • [7] Projectively Ricci-flat General(α, β)-metrics
    Esra Sengelen SEVIM
    ActaMathematicaSinica,EnglishSeries, 2024, (06) : 1409 - 1419
  • [8] Projectively Ricci-flat general (α, β)-metrics
    Sevim, Esra Sengelen
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2024, 40 (06) : 1409 - 1419
  • [9] Some projectively Ricci-flat (α, β)-metrics
    Gabrani, Mehran
    Sevim, Esra Sengelen
    Shen, Zhongmin
    PERIODICA MATHEMATICA HUNGARICA, 2023, 86 (02) : 514 - 529
  • [10] Some Ricci-flat Finsler metrics
    Sevim, Esra Sengelen
    Shen, Zhongmin
    Zhao, Lili
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2013, 83 (04): : 617 - 623