Interfacial reaction kinetics

被引:0
|
作者
B. O'Shaughnessy
D. Vavylonis
机构
[1] Department of Chemical Engineering,
[2] Columbia University,undefined
[3] 500 West 120th Street,undefined
[4] New York,undefined
[5] NY 10027,undefined
[6] USA,undefined
[7] Department of Physics,undefined
[8] Columbia University,undefined
[9] 538 West 120th Street,undefined
[10] New York,undefined
[11] NY 10027,undefined
[12] USA,undefined
来源
关键词
PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion - 68.45.Da Adsorption and desorption kinetics; evaporation and condensation - 82.35.+t Polymer reactions and polymerization;
D O I
暂无
中图分类号
学科分类号
摘要
We study irreversible A-B reaction kinetics at a fixed interface separating two immiscible bulk phases, A and B. Coupled equations are derived for the hierarchy of many-body correlation functions. Postulating physically motivated bounds, closed equations result without the need for ad hoc decoupling approximations. We consider general dynamical exponent z, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} is the rms diffusion distance after time t. At short times the number of reactions per unit area, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, is 2nd order in the far-field reactant densities \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}. For spatial dimensions dabove a critical value \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, simple mean field (MF) kinetics pertain, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} where Qb is the local reactivity. For low dimensions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, this MF regime is followed by 2nd order diffusion controlled (DC) kinetics, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, provided \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}. Logarithmic corrections arise in marginal cases. At long times, a cross-over to 1st order DC kinetics occurs: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}. A density depletion hole grows on the more dilute A side. In the symmetric case (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}), when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} the long time decay of the interfacial reactant density, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, is determined by fluctuations in the initial reactant distribution, giving \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}. Correspondingly, A-rich and B-rich regions develop at the interface analogously to the segregation effects established by other authors for the bulk reaction \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}. For \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} fluctuations are unimportant: local mean field theory applies at the interface (joint density distribution approximating the product of A and B densities) and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}. We apply our results to simple molecules (Fickian diffusion, z=2) and to several models of short-time polymer diffusion (z>2).
引用
收藏
页码:159 / 177
页数:18
相关论文
共 50 条
  • [41] Kinetics and mechanism of interfacial reaction in sigma fibre-reinforced Ti MMCs
    Brunel Univ, Middlesex, United Kingdom
    Compos Part A Appl Sci Manuf, 2 (131-140):
  • [42] Slag Electrical Conductivity and Its Effect on Mass Transport and Interfacial Reaction Kinetics
    Biswas, Jayasree
    Hazaveh, Parsa K.
    Coley, Kenneth S.
    STEEL RESEARCH INTERNATIONAL, 2024,
  • [43] Kinetics of PbTiO3 perovskite phase formation via an interfacial reaction
    Yun-Mo Sung
    Woo-Chul Kwak
    Sungtae Kim
    Journal of Materials Research, 2002, 17 : 407 - 412
  • [44] Interfacial reaction mechanism and kinetics between Au–20Sn and Sn
    Wensheng Liu
    Yikai Wang
    Yunzhu Ma
    Yufeng Huang
    Qiang Yu
    Journal of Materials Science: Materials in Electronics, 2016, 27 : 5982 - 5991
  • [45] KINETICS OF REACTION OF TEREPHTHALOYL CHLORIDE WITH CI DIRECT VIOLET 12 BY INTERFACIAL POLYCONDENSATION
    OGAWA, T
    IDAKA, E
    OKUDA, M
    KOBUNSHI RONBUNSHU, 1975, 32 (09) : 545 - 550
  • [46] Kinetics and interfacial phenomena
    Szymanowski, J
    SOLVENT EXTRACTION AND ION EXCHANGE, 2000, 18 (04) : 729 - 751
  • [47] INTERFACIAL REACTION-KINETICS OF COATED SIC FIBERS WITH VARIOUS TITANIUM-ALLOYS
    GUNDEL, DB
    WAWNER, FE
    SCRIPTA METALLURGICA ET MATERIALIA, 1991, 25 (02): : 437 - 441
  • [48] Kinetics of an interfacial reaction. Hydroxide ion catalyzed c-alkylation of phenylacetonitrile
    Sawarkar, CS
    Juvekar, VA
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1996, 35 (08) : 2581 - 2589
  • [49] STUDY OF REACTION COUPLING AND INTERFACIAL KINETICS AT SEMICONDUCTOR ELECTRODES BY BAND EDGE SHIFT MEASUREMENTS
    ALLONGUE, P
    BLONKOWSKI, S
    LINCOT, D
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1991, 300 (1-2): : 261 - 281
  • [50] INTERFACIAL REACTION-KINETICS IN DECARBURIZATION OF LIQUID-IRON BY CARBON-DIOXIDE
    SAIN, DR
    BELTON, GR
    METALLURGICAL TRANSACTIONS B-PROCESS METALLURGY, 1976, 7 (02): : 235 - 244