Interfacial reaction kinetics

被引:0
|
作者
B. O'Shaughnessy
D. Vavylonis
机构
[1] Department of Chemical Engineering,
[2] Columbia University,undefined
[3] 500 West 120th Street,undefined
[4] New York,undefined
[5] NY 10027,undefined
[6] USA,undefined
[7] Department of Physics,undefined
[8] Columbia University,undefined
[9] 538 West 120th Street,undefined
[10] New York,undefined
[11] NY 10027,undefined
[12] USA,undefined
来源
关键词
PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion - 68.45.Da Adsorption and desorption kinetics; evaporation and condensation - 82.35.+t Polymer reactions and polymerization;
D O I
暂无
中图分类号
学科分类号
摘要
We study irreversible A-B reaction kinetics at a fixed interface separating two immiscible bulk phases, A and B. Coupled equations are derived for the hierarchy of many-body correlation functions. Postulating physically motivated bounds, closed equations result without the need for ad hoc decoupling approximations. We consider general dynamical exponent z, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} is the rms diffusion distance after time t. At short times the number of reactions per unit area, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, is 2nd order in the far-field reactant densities \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}. For spatial dimensions dabove a critical value \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, simple mean field (MF) kinetics pertain, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} where Qb is the local reactivity. For low dimensions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, this MF regime is followed by 2nd order diffusion controlled (DC) kinetics, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, provided \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}. Logarithmic corrections arise in marginal cases. At long times, a cross-over to 1st order DC kinetics occurs: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}. A density depletion hole grows on the more dilute A side. In the symmetric case (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}), when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} the long time decay of the interfacial reactant density, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, is determined by fluctuations in the initial reactant distribution, giving \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}. Correspondingly, A-rich and B-rich regions develop at the interface analogously to the segregation effects established by other authors for the bulk reaction \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}. For \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} fluctuations are unimportant: local mean field theory applies at the interface (joint density distribution approximating the product of A and B densities) and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}. We apply our results to simple molecules (Fickian diffusion, z=2) and to several models of short-time polymer diffusion (z>2).
引用
收藏
页码:159 / 177
页数:18
相关论文
共 50 条
  • [31] ON THE INTERFACIAL KINETICS OF THE REACTION OF CO2 WITH LIQUID-IRON
    HUA, CH
    PARLEE, NAD
    METALLURGICAL TRANSACTIONS B-PROCESS METALLURGY, 1983, 14 (03): : 504 - 506
  • [32] Penicillin G extraction by amberlite LA-2 - a study of interfacial reaction kinetics by interfacial tension measurements
    Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
    J. CHEM. TECHNOL. BIOTECHNOL., 3 (239-244):
  • [33] Interfacial reaction mechanism and kinetics between Au-20Sn and Sn
    Liu, Wensheng
    Wang, Yikai
    Ma, Yunzhu
    Huang, Yufeng
    Yu, Qiang
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2016, 27 (06) : 5982 - 5991
  • [34] Phenomena in the interfacial reaction kinetics of gases with liquid iron and copper - Similarities and differences
    Belton, GR
    ALEX MCLEAN SYMPOSIUM PROCEEDINGS, 1998, : 11 - 18
  • [35] KINETICS OF THE REACTION BETWEEN CHLORITE AND HEXACYANOFERRATE(II) IN AQUEOUS-SOLUTION - EVIDENCE FOR AN INTERFACIAL REDOX REACTION
    KHAN, AH
    HIGGINSON, WCE
    JOURNAL OF THE CHEMICAL SOCIETY-DALTON TRANSACTIONS, 1981, (12): : 2537 - 2543
  • [36] The kinetics and mechanism of interfacial reaction in sigma fibre-reinforced Ti MMCs
    Fan, Z
    Guo, ZX
    Cantor, B
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 1997, 28 (02) : 131 - 140
  • [37] KINETICS OF INTERFACIAL REACTION IN BIMETALLIC CU-SN THIN-FILMS
    TU, KN
    THOMPSON, RD
    ACTA METALLURGICA, 1982, 30 (05): : 947 - 952
  • [38] Kinetics of PbTiO3 perovskite phase formation via an interfacial reaction
    Sung, YM
    Kwak, WC
    Kim, S
    JOURNAL OF MATERIALS RESEARCH, 2002, 17 (02) : 407 - 412
  • [39] Chemo-Marangoni convection driven by an interfacial reaction: Pattern formation and kinetics
    Eckert, K.
    Acker, M.
    Tadmouri, R.
    Pimienta, V.
    CHAOS, 2012, 22 (03)
  • [40] Interfacial reaction kinetics between silver and ceramic-filled glass substrate
    Jean, JH
    Chang, CR
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2004, 87 (07) : 1287 - 1293