Interfacial reaction kinetics

被引:0
|
作者
B. O'Shaughnessy
D. Vavylonis
机构
[1] Department of Chemical Engineering,
[2] Columbia University,undefined
[3] 500 West 120th Street,undefined
[4] New York,undefined
[5] NY 10027,undefined
[6] USA,undefined
[7] Department of Physics,undefined
[8] Columbia University,undefined
[9] 538 West 120th Street,undefined
[10] New York,undefined
[11] NY 10027,undefined
[12] USA,undefined
来源
关键词
PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion - 68.45.Da Adsorption and desorption kinetics; evaporation and condensation - 82.35.+t Polymer reactions and polymerization;
D O I
暂无
中图分类号
学科分类号
摘要
We study irreversible A-B reaction kinetics at a fixed interface separating two immiscible bulk phases, A and B. Coupled equations are derived for the hierarchy of many-body correlation functions. Postulating physically motivated bounds, closed equations result without the need for ad hoc decoupling approximations. We consider general dynamical exponent z, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} is the rms diffusion distance after time t. At short times the number of reactions per unit area, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, is 2nd order in the far-field reactant densities \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}. For spatial dimensions dabove a critical value \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, simple mean field (MF) kinetics pertain, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} where Qb is the local reactivity. For low dimensions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, this MF regime is followed by 2nd order diffusion controlled (DC) kinetics, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, provided \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}. Logarithmic corrections arise in marginal cases. At long times, a cross-over to 1st order DC kinetics occurs: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}. A density depletion hole grows on the more dilute A side. In the symmetric case (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}), when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} the long time decay of the interfacial reactant density, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, is determined by fluctuations in the initial reactant distribution, giving \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}. Correspondingly, A-rich and B-rich regions develop at the interface analogously to the segregation effects established by other authors for the bulk reaction \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}. For \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} fluctuations are unimportant: local mean field theory applies at the interface (joint density distribution approximating the product of A and B densities) and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}. We apply our results to simple molecules (Fickian diffusion, z=2) and to several models of short-time polymer diffusion (z>2).
引用
收藏
页码:159 / 177
页数:18
相关论文
共 50 条
  • [1] Interfacial reaction kinetics
    O'Shaughnessy, B
    Vavylonis, D
    EUROPEAN PHYSICAL JOURNAL E, 2000, 1 (2-3): : 159 - 177
  • [2] The kinetics of an interfacial reaction in a microemulsion
    Tjandra, D
    Lade, M
    Wagner, O
    Schomacker, R
    CHEMICAL ENGINEERING & TECHNOLOGY, 1998, 21 (08) : 666 - 670
  • [3] Interfacial control of reaction kinetics in oxides
    Kotula, PG
    Carter, CB
    PHYSICAL REVIEW LETTERS, 1996, 77 (16) : 3367 - 3370
  • [4] Interfacial reaction and reaction kinetics between silicon carbide and aluminum
    Zhao, X.
    Jiang, J.X.
    Xiong, D.G.
    Yang, G.
    1993, 1
  • [5] The kinetics of an interfacial reaction in microemulsions with excess phases
    Bode, G
    Lade, M
    Schomäcker, R
    CHEMICAL ENGINEERING & TECHNOLOGY, 2000, 23 (05) : 405 - 409
  • [6] Kinetics of an interfacial reaction in microemulsions with excess phases
    Bode, Gerald
    Lade, Markus
    Schomäcker, Reinhard
    Chemical Engineering and Technology, 2000, 23 (05): : 405 - 409
  • [7] REACTION-KINETICS OF INTERFACIAL POLYCONDENSATION OF POLYARYLATE
    TSAI, HB
    JENG, JT
    TSAI, RS
    JOURNAL OF APPLIED POLYMER SCIENCE, 1990, 39 (02) : 471 - 476
  • [8] INTERFACIAL KINETICS IN THE REACTION OF GASES WITH LIQUID SLAGS
    BELTON, GR
    JOURNAL OF METALS, 1984, 36 (08): : 86 - 86
  • [9] Electrochemical Reaction Kinetics at Constant Interfacial Potential
    Li, Huan
    Luan, Dong
    Long, Jun
    Guo, Pu
    Xiao, Jianping
    ACS CATALYSIS, 2024, 14 (17): : 12814 - 12823
  • [10] Kinetics of interfacial reaction between two polymers studied by interfacial tension measurements
    Chi, C.
    Hu, Y. T.
    Lips, A.
    MACROMOLECULES, 2007, 40 (18) : 6665 - 6668