k-tuple total domination in cross products of graphs

被引:0
|
作者
Michael A. Henning
Adel P. Kazemi
机构
[1] University of Johannesburg,Department of Mathematics
[2] University of Mohaghegh Ardabili,Department of Mathematics
来源
关键词
Cross product; Total domination; -tuple total domination;
D O I
暂无
中图分类号
学科分类号
摘要
For k≥1 an integer, a set S of vertices in a graph G with minimum degree at least k is a k-tuple total dominating set of G if every vertex of G is adjacent to at least k vertices in S. The minimum cardinality of a k-tuple total dominating set of G is the k-tuple total domination number of G. When k=1, the k-tuple total domination number is the well-studied total domination number. In this paper, we establish upper and lower bounds on the k-tuple total domination number of the cross product graph G×H for any two graphs G and H with minimum degree at least k. In particular, we determine the exact value of the k-tuple total domination number of the cross product of two complete graphs.
引用
收藏
页码:339 / 346
页数:7
相关论文
共 50 条
  • [41] The k-tuple twin domination in de Bruijn and Kautz digraphs
    Araki, Toru
    [J]. DISCRETE MATHEMATICS, 2008, 308 (24) : 6406 - 6413
  • [42] Upper Bounds on the k-Tuple (Roman) Domination Number of a Graph
    Henning, Michael A.
    Rad, Nader Jafari
    [J]. GRAPHS AND COMBINATORICS, 2021, 37 (01) : 325 - 336
  • [43] On the k-tuple domination of generalized de Brujin and Kautz digraphs
    Wu, Lingye
    Shan, Erfang
    Liu, Zengrong
    [J]. INFORMATION SCIENCES, 2010, 180 (22) : 4430 - 4435
  • [44] Improved Bounds on the k-tuple (Roman) Domination Number of a Graph
    Noor A’lawiah Abd Aziz
    Michael A. Henning
    Nader Jafari Rad
    Hailiza Kamarulhaili
    [J]. Graphs and Combinatorics, 2022, 38
  • [45] On the total domination number of cross products of graphs
    Ei-Zahar, Mohamed
    Gravier, Sylvain
    Klobucar, Antoaneta
    [J]. DISCRETE MATHEMATICS, 2008, 308 (10) : 2025 - 2029
  • [46] GENERALIZED K-TUPLE COLORINGS OF CYCLES AND OTHER GRAPHS
    BRIGHAM, RC
    DUTTON, RD
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1982, 32 (01) : 90 - 94
  • [47] Connected k-tuple twin domination in de Bruijn and Kautz digraphs
    Araki, Toru
    [J]. DISCRETE MATHEMATICS, 2009, 309 (21) : 6229 - 6234
  • [48] The k-tuple twin domination in generalized de Bruijn and Kautz networks
    Shan, Erfang
    Dong, Yanxia
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 63 (01) : 222 - 227
  • [49] On the total {k}-domination number of Cartesian products of graphs
    Li, Ning
    Hou, Xinmin
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2009, 18 (02) : 173 - 178
  • [50] On the total {k}-domination number of Cartesian products of graphs
    Ning Li
    Xinmin Hou
    [J]. Journal of Combinatorial Optimization, 2009, 18 : 173 - 178