GENERALIZED K-TUPLE COLORINGS OF CYCLES AND OTHER GRAPHS

被引:9
|
作者
BRIGHAM, RC [1 ]
DUTTON, RD [1 ]
机构
[1] UNIV CENT FLORIDA,DEPT COMP SCI,ORLANDO,FL 32816
关键词
D O I
10.1016/0095-8956(82)90079-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:90 / 94
页数:5
相关论文
共 50 条
  • [1] k-tuple colorings of the Cartesian product of graphs
    Bonomo, Flavia
    Koch, Ivo
    Torres, Pablo
    Valencia-Pabon, Mario
    [J]. DISCRETE APPLIED MATHEMATICS, 2018, 245 : 177 - 182
  • [2] Neighbor-distinguishing k-tuple edge-colorings of graphs
    Baril, Jean-Luc
    Togni, Olivier
    [J]. DISCRETE MATHEMATICS, 2009, 309 (16) : 5147 - 5157
  • [3] k-tuple domination in graphs
    Liao, CS
    Chang, GJ
    [J]. INFORMATION PROCESSING LETTERS, 2003, 87 (01) : 45 - 50
  • [4] No-hole k-tuple (r+1)-distant colorings of odd cycles
    Guichard, DR
    [J]. DISCRETE APPLIED MATHEMATICS, 1996, 64 (01) : 87 - 92
  • [5] On k-tuple domination of random graphs
    Wang Bin
    Xiang Kai-Nan
    [J]. APPLIED MATHEMATICS LETTERS, 2009, 22 (10) : 1513 - 1517
  • [6] k-tuple restrained domination in graphs
    Henning, Michael A.
    Kazemi, Adel P.
    [J]. QUAESTIONES MATHEMATICAE, 2021, 44 (08) : 1023 - 1036
  • [7] k-tuple total domination in graphs
    Henning, Michael A.
    Kazemi, Adel P.
    [J]. DISCRETE APPLIED MATHEMATICS, 2010, 158 (09) : 1006 - 1011
  • [8] Roman k-tuple Domination in Graphs
    Kazemi, Adel P.
    [J]. IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2020, 15 (02): : 101 - 115
  • [9] Proof of a conjecture on k-tuple domination in graphs
    Xu, Guangjun
    Kang, Liying
    Shan, Erfang
    Yan, Hong
    [J]. APPLIED MATHEMATICS LETTERS, 2008, 21 (03) : 287 - 290
  • [10] On the complexity of {k}-domination and k-tuple domination in graphs
    Argiroffo, Gabriela
    Leoni, Valeria
    Torres, Pablo
    [J]. INFORMATION PROCESSING LETTERS, 2015, 115 (6-8) : 556 - 561