Robust fine-grained image classification with noisy labels

被引:0
|
作者
Xinxing Tan
Zemin Dong
Hualing Zhao
机构
[1] Wuhan Institute of City,Department of Information Engineering
[2] Wuhan Institute of City,Research and Training Center
[3] Wuhan University of Technology,School of Science
来源
The Visual Computer | 2023年 / 39卷
关键词
Fine-grained image classification; Noisy labels; Deep learning; Robust loss;
D O I
暂无
中图分类号
学科分类号
摘要
Since annotating fine-grained labels requires special expertise, label annotations often lack quality for many real-world fine-grained image classifications (FGIC). Due to the effectiveness of noisy labels, training deep fine-grained models directly tends to have an inferior recognition ability. To address this problem in FGIC, a robust classification approach combining “active–passive–loss (APL)” framework and multi-branch attention learning is proposed. First, in order to learn discriminative regions for classification effectively, the multi-branch attention learning framework that consists of raw, object, and part branch is introduced. These three branches are connected by attention mechanism, which enables the network to learn fine-grained features of different parts from different scales including raw, object and part levels. Second, treating noisy labels as anomalies, the novel loss framework APL that can guarantee robustness and sufficient learning is adopted to achieve robust predictions in each branch. Third, in determining the final predictions, the outputs from global and object branches are combined to achieve higher classification performance. Several experiments on fine-grained image datasets show that the proposed approach is noise-robust and can achieve excellent classification performance in the presence of noisy labels in FGIC.
引用
下载
收藏
页码:5637 / 5650
页数:13
相关论文
共 50 条
  • [31] Aggregate attention module for fine-grained image classification
    Wang, Xingmei
    Shi, Jiahao
    Fujita, Hamido
    Zhao, Yilin
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2021, 14 (7) : 8335 - 8345
  • [32] Fine-Grained Image Classification With Gaussian Mixture Layer
    Liang, Jingyun
    Guo, Jinlin
    Liu, Xin
    Lao, Songyang
    IEEE ACCESS, 2018, 6 : 53356 - 53367
  • [33] Grouping Bilinear Pooling for Fine-Grained Image Classification
    Zeng, Rui
    He, Jingsong
    APPLIED SCIENCES-BASEL, 2022, 12 (10):
  • [34] Pre-Processing for Fine-Grained Image Classification
    Ge, Hao
    Yang, Feng
    Tu, Xiaoguang
    Xie, Mei
    Ma, Zheng
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2017, E100D (08): : 1938 - 1942
  • [35] Improving Fine-Grained Image Classification With Multimodal Information
    Xu, Jie
    Zhang, Xiaoqian
    Zhao, Changming
    Geng, Zili
    Feng, Yuren
    Miao, Ke
    Li, Yunji
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 2082 - 2095
  • [36] A Fine-Grained Image Classification Method Built on MobileViT
    Lu, Zhengqiu
    Wang, Haiying
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2024, 38 (06)
  • [37] Pixel Saliency Based Encoding for Fine-Grained Image Classification
    Yin, Chao
    Zhang, Lei
    Liu, Ji
    PATTERN RECOGNITION AND COMPUTER VISION (PRCV 2018), PT I, 2018, 11256 : 274 - 285
  • [38] Fine-grained Image Classification via Combining Vision and Language
    He, Xiangteng
    Peng, Yuxin
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 7332 - 7340
  • [39] Subtler mixed attention network on fine-grained image classification
    Liu, Chao
    Huang, Lei
    Wei, Zhiqiang
    Zhang, Wenfeng
    APPLIED INTELLIGENCE, 2021, 51 (11) : 7903 - 7916
  • [40] Fine-Grained Clothing Image Classification by Style Feature Description
    Wu M.
    Liu L.
    Fu X.
    Liu L.
    Huang Q.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2019, 31 (05): : 780 - 791