Robust fine-grained image classification with noisy labels

被引:0
|
作者
Xinxing Tan
Zemin Dong
Hualing Zhao
机构
[1] Wuhan Institute of City,Department of Information Engineering
[2] Wuhan Institute of City,Research and Training Center
[3] Wuhan University of Technology,School of Science
来源
The Visual Computer | 2023年 / 39卷
关键词
Fine-grained image classification; Noisy labels; Deep learning; Robust loss;
D O I
暂无
中图分类号
学科分类号
摘要
Since annotating fine-grained labels requires special expertise, label annotations often lack quality for many real-world fine-grained image classifications (FGIC). Due to the effectiveness of noisy labels, training deep fine-grained models directly tends to have an inferior recognition ability. To address this problem in FGIC, a robust classification approach combining “active–passive–loss (APL)” framework and multi-branch attention learning is proposed. First, in order to learn discriminative regions for classification effectively, the multi-branch attention learning framework that consists of raw, object, and part branch is introduced. These three branches are connected by attention mechanism, which enables the network to learn fine-grained features of different parts from different scales including raw, object and part levels. Second, treating noisy labels as anomalies, the novel loss framework APL that can guarantee robustness and sufficient learning is adopted to achieve robust predictions in each branch. Third, in determining the final predictions, the outputs from global and object branches are combined to achieve higher classification performance. Several experiments on fine-grained image datasets show that the proposed approach is noise-robust and can achieve excellent classification performance in the presence of noisy labels in FGIC.
引用
下载
收藏
页码:5637 / 5650
页数:13
相关论文
共 50 条
  • [21] Efficient Image Embedding for Fine-Grained Visual Classification
    Payatsuporn, Soranan
    Kijsirikul, Boonserm
    2022-14TH INTERNATIONAL CONFERENCE ON KNOWLEDGE AND SMART TECHNOLOGY (KST 2022), 2022, : 40 - 45
  • [22] Separated smooth sampling for fine-grained image classification
    Rong, Shenghai
    Wang, Zilei
    Wang, Jie
    NEUROCOMPUTING, 2021, 461 : 350 - 359
  • [23] Evaluation of Output Embeddings for Fine-Grained Image Classification
    Akata, Zeynep
    Reed, Scott
    Walter, Daniel
    Lee, Honglak
    Schiele, Bernt
    2015 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2015, : 2927 - 2936
  • [24] Aggregate attention module for fine-grained image classification
    Xingmei Wang
    Jiahao Shi
    Hamido Fujita
    Yilin Zhao
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 : 8335 - 8345
  • [25] Adversarial erasing attention for fine-grained image classification
    Ji, Jinsheng
    Jiang, Linfeng
    Zhang, Tao
    Zhong, Weilin
    Xiong, Huilin
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (15) : 22867 - 22889
  • [26] Exploiting spatial relation for fine-grained image classification
    Qi, Lei
    Lu, Xiaoqiang
    Li, Xuelong
    PATTERN RECOGNITION, 2019, 91 : 47 - 55
  • [27] Survey of Vision Transformer in Fine-Grained Image Classification
    Sun, Lulu
    Liu, Jianping
    Wang, Jian
    Xing, Jialu
    Zhang, Yue
    Wang, Chenyang
    Computer Engineering and Applications, 60 (10): : 30 - 46
  • [28] Adversarial erasing attention for fine-grained image classification
    Jinsheng Ji
    Linfeng Jiang
    Tao Zhang
    Weilin Zhong
    Huilin Xiong
    Multimedia Tools and Applications, 2021, 80 : 22867 - 22889
  • [29] Application of Image Classification for Fine-Grained Nudity Detection
    Ion, Cristian
    Minea, Cristian
    ADVANCES IN VISUAL COMPUTING, ISVC 2019, PT I, 2020, 11844 : 3 - 15
  • [30] Exploring Misclassification Information for Fine-Grained Image Classification
    Wang, Da-Han
    Zhou, Wei
    Li, Jianmin
    Wu, Yun
    Zhu, Shunzhi
    SENSORS, 2021, 21 (12)