On invariants of certain symmetric algebras

被引:0
|
作者
Gaetana Restuccia
Zhongming Tang
Rosanna Utano
机构
[1] University of Messina,Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences
[2] Soochow (Suzhou) University,Department of Mathematics
关键词
Multiplicity; Regularity; Symmetric algebra; -Sequence; 13D02; 13H15;
D O I
暂无
中图分类号
学科分类号
摘要
Let Syz1(m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{Syz}}_1(\mathfrak {m})$$\end{document} be the first syzygy of the graded maximal ideal m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {m}$$\end{document} of a polynomial ring K[x1,…,xn]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K[x_1,\ldots ,x_n]$$\end{document} over a field K. The multiplicity and (Castelnuovo–Mumford) regularity of the symmetric algebra Sym(Syz1(m))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{Sym}}({\mathrm{Syz}}_1(\mathfrak {m}))$$\end{document} are estimated by using the theory of s-sequences. It is proved that the multiplicity of Sym(Syz1(m))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{Sym}}({\mathrm{Syz}}_1(\mathfrak {m}))$$\end{document} is 1 when n≥5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 5$$\end{document}, and n-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-2$$\end{document} is an upper bound for its regularity. In virtue of Gröbner bases, this bound is shown to be reached provided n≤5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\le 5$$\end{document}.
引用
收藏
页码:1923 / 1935
页数:12
相关论文
共 50 条
  • [1] On invariants of certain symmetric algebras
    Restuccia, Gaetana
    Tang, Zhongming
    Utano, Rosanna
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2018, 197 (06) : 1923 - 1935
  • [2] Invariants of symmetric algebras associated to graphs
    Imbesi, Maurizio
    La Barbiera, Monica
    TURKISH JOURNAL OF MATHEMATICS, 2012, 36 (03) : 345 - 358
  • [3] On certain invariants of commutative artinian algebras
    Aleksandrov, Alexandre
    COMPTES RENDUS MATHEMATIQUE, 2024, 362
  • [4] TAKIFF ALGEBRAS WITH POLYNOMIAL RINGS OF SYMMETRIC INVARIANTS
    DMITRI I. PANYUSHEV
    OKSANA S. YAKIMOVA
    Transformation Groups, 2020, 25 : 609 - 624
  • [5] TAKIFF ALGEBRAS WITH POLYNOMIAL RINGS OF SYMMETRIC INVARIANTS
    Panyushev, Dmitri, I
    Yakimova, Oksana S.
    TRANSFORMATION GROUPS, 2020, 25 (02) : 609 - 624
  • [6] Central ideals and Cartan invariants of symmetric algebras
    Héthelyi, L
    Horváth, E
    Külshammer, B
    Murray, J
    JOURNAL OF ALGEBRA, 2005, 293 (01) : 243 - 260
  • [7] On symmetric invariants of centralisers in reductive Lie algebras
    Panyushev, D.
    Premet, A.
    Yakimova, O.
    JOURNAL OF ALGEBRA, 2007, 313 (01) : 343 - 391
  • [8] Depth of symmetric algebras of certain ideals
    Johnson, MR
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (06) : 1581 - 1585
  • [9] On graded Cartan invariants of symmetric groups and Hecke algebras
    Anton Evseev
    Shunsuke Tsuchioka
    Mathematische Zeitschrift, 2017, 285 : 177 - 213
  • [10] Fine Hochschild invariants of derived categories for symmetric algebras
    Zimmermann, Alexander
    JOURNAL OF ALGEBRA, 2007, 308 (01) : 350 - 367