On invariants of certain symmetric algebras

被引:0
|
作者
Gaetana Restuccia
Zhongming Tang
Rosanna Utano
机构
[1] University of Messina,Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences
[2] Soochow (Suzhou) University,Department of Mathematics
关键词
Multiplicity; Regularity; Symmetric algebra; -Sequence; 13D02; 13H15;
D O I
暂无
中图分类号
学科分类号
摘要
Let Syz1(m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{Syz}}_1(\mathfrak {m})$$\end{document} be the first syzygy of the graded maximal ideal m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {m}$$\end{document} of a polynomial ring K[x1,…,xn]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K[x_1,\ldots ,x_n]$$\end{document} over a field K. The multiplicity and (Castelnuovo–Mumford) regularity of the symmetric algebra Sym(Syz1(m))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{Sym}}({\mathrm{Syz}}_1(\mathfrak {m}))$$\end{document} are estimated by using the theory of s-sequences. It is proved that the multiplicity of Sym(Syz1(m))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{Sym}}({\mathrm{Syz}}_1(\mathfrak {m}))$$\end{document} is 1 when n≥5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 5$$\end{document}, and n-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-2$$\end{document} is an upper bound for its regularity. In virtue of Gröbner bases, this bound is shown to be reached provided n≤5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\le 5$$\end{document}.
引用
收藏
页码:1923 / 1935
页数:12
相关论文
共 50 条