TAKIFF ALGEBRAS WITH POLYNOMIAL RINGS OF SYMMETRIC INVARIANTS

被引:0
|
作者
DMITRI I. PANYUSHEV
OKSANA S. YAKIMOVA
机构
[1] Institute for Information Transmission Problems of the Russian Academy of Sciences,Mathematisches Institut
[2] Universität zu Köln,undefined
来源
Transformation Groups | 2020年 / 25卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Extending results of Rais–Tauvel, Macedo–Savage, and Arakawa–Premet, we prove that under mild restrictions on the Lie algebra q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{q} $$\end{document} having the polynomial ring of symmetric invariants, the m-th Takiff algebra of q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{q} $$\end{document}, q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{q} $$\end{document}⟨m⟩, also has a polynomial ring of symmetric invariants.
引用
收藏
页码:609 / 624
页数:15
相关论文
共 50 条
  • [1] TAKIFF ALGEBRAS WITH POLYNOMIAL RINGS OF SYMMETRIC INVARIANTS
    Panyushev, Dmitri, I
    Yakimova, Oksana S.
    [J]. TRANSFORMATION GROUPS, 2020, 25 (02) : 609 - 624
  • [2] LOCALLY POLYNOMIAL RINGS AND SYMMETRIC ALGEBRAS
    SUSLIN, AA
    [J]. MATHEMATICS OF THE USSR-IZVESTIYA, 1977, 11 (03): : 472 - 484
  • [3] Polynomial bounds for rings of invariants
    Derksen, H
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (04) : 955 - 963
  • [4] On invariants of certain symmetric algebras
    Restuccia, Gaetana
    Tang, Zhongming
    Utano, Rosanna
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2018, 197 (06) : 1923 - 1935
  • [5] On invariants of certain symmetric algebras
    Gaetana Restuccia
    Zhongming Tang
    Rosanna Utano
    [J]. Annali di Matematica Pura ed Applicata (1923 -), 2018, 197 : 1923 - 1935
  • [6] Polynomial rings over symmetric rings need not be symmetric
    Wang, ZP
    Wang, LM
    [J]. COMMUNICATIONS IN ALGEBRA, 2006, 34 (03) : 1043 - 1047
  • [7] Polynomial rings over symmetric rings need not be symmetric
    Wang, Zhanping
    Wang, Limin
    [J]. COMMUNICATIONS IN ALGEBRA, 2006, 34 (10) : 3609 - 3613
  • [8] LOCALLY POLYNOMIAL ALGEBRAS ARE SYMMETRIC ALGEBRAS
    BASS, H
    CONNELL, EH
    WRIGHT, DL
    [J]. INVENTIONES MATHEMATICAE, 1977, 38 (03) : 279 - 299
  • [9] A PROPERTY OF TAKIFF ALGEBRAS
    GEOFFRIAU, F
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1994, 319 (01): : 11 - 14
  • [10] FUNCTIONS WITH VALUES IN ALGEBRAS AND RINGS OF INVARIANTS
    TEN, VD
    [J]. IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1982, (02): : 71 - 77