TAKIFF ALGEBRAS WITH POLYNOMIAL RINGS OF SYMMETRIC INVARIANTS

被引:0
|
作者
DMITRI I. PANYUSHEV
OKSANA S. YAKIMOVA
机构
[1] Institute for Information Transmission Problems of the Russian Academy of Sciences,Mathematisches Institut
[2] Universität zu Köln,undefined
来源
Transformation Groups | 2020年 / 25卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Extending results of Rais–Tauvel, Macedo–Savage, and Arakawa–Premet, we prove that under mild restrictions on the Lie algebra q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{q} $$\end{document} having the polynomial ring of symmetric invariants, the m-th Takiff algebra of q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{q} $$\end{document}, q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{q} $$\end{document}⟨m⟩, also has a polynomial ring of symmetric invariants.
引用
收藏
页码:609 / 624
页数:15
相关论文
共 50 条