Upper bounds on the signed (k, k)-domatic number

被引:0
|
作者
Lutz Volkmann
机构
[1] RWTH-Aachen University,Lehrstuhl II für Mathematik
来源
Aequationes mathematicae | 2013年 / 86卷
关键词
05C69; Signed (; , ; )-domatic numbers; signed ; -dominating function; signed ; -domination number; Regular graphs;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a graph with vertex set V(G), and let f : V(G) → {−1, 1} be a two-valued function. If k ≥ 1 is an integer and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sum_{x\in N[v]} f(x) \ge k}$$\end{document} for each \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${v \in V(G)}$$\end{document} , where N[v] is the closed neighborhood of v, then f is a signed k-dominating function on G. A set {f1,f2, . . . ,fd} of distinct signed k-dominating functions on G with the property that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sum_{i=1}^d f_i(x) \le k}$$\end{document} for each \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x \in V(G)}$$\end{document} , is called a signed (k, k)-dominating family (of functions) on G. The maximum number of functions in a signed (k, k)-dominating family on G is the signed (k, k)-domatic number of G. In this article we mainly present upper bounds on the signed (k, k)-domatic number, in particular for regular graphs.
引用
收藏
页码:279 / 287
页数:8
相关论文
共 50 条
  • [41] THE TOTAL {k}-DOMATIC NUMBER OF DIGRAPHS
    Sheikholeslami, Seyed Mahmoud
    Volkmann, Lutz
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2012, 32 (03) : 461 - 471
  • [42] Upper signed k-domination number in graphs
    Zhou, Ligang
    Shan, Erfang
    Zhao, Yancai
    ARS COMBINATORIA, 2015, 122 : 307 - 318
  • [43] Lower bounds on the signed k-subdomination number of graphs
    Liu, HL
    Sun, L
    ARS COMBINATORIA, 2004, 71 : 195 - 199
  • [44] THE k-DOMATIC NUMBER OF A GRAPH
    Kaemmerling, Karsten
    Volkmann, Lutz
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2009, 59 (02) : 539 - 550
  • [45] The total {k}-domatic number of a graph
    Sheikholeslami, S. M.
    Volkmann, L.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2012, 23 (02) : 252 - 260
  • [46] THE (j, k)-DOMATIC NUMBER OF A GRAPH
    Sheikholeslami, S. M.
    Volkmann, L.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2011, 8 (02) : 161 - 168
  • [47] Bounds on the Upper k-Domination Number and the Upper k-Star-Forming Number of a Graph
    Odile, Favaron
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2012, 80 : 321 - 332
  • [48] Upper bounds on the k-domination number and the k-Roman domination number
    Hansberg, Adriana
    Volkmann, Lutz
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (07) : 1634 - 1639
  • [49] On the Total {k}-Domination and Total {k}-Domatic Number of Graphs
    Aram, H.
    Sheikholeslami, S. M.
    Volkmann, L.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2013, 36 (01) : 39 - 47
  • [50] SIGNED TOTAL DISTANCE k-DOMATIC NUMBERS OF GRAPHS
    Sheikholeslami, S. M.
    Volkmann, L.
    MATEMATICKI VESNIK, 2013, 65 (03): : 387 - 393