Upper bounds on the signed (k, k)-domatic number

被引:0
|
作者
Lutz Volkmann
机构
[1] RWTH-Aachen University,Lehrstuhl II für Mathematik
来源
Aequationes mathematicae | 2013年 / 86卷
关键词
05C69; Signed (; , ; )-domatic numbers; signed ; -dominating function; signed ; -domination number; Regular graphs;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a graph with vertex set V(G), and let f : V(G) → {−1, 1} be a two-valued function. If k ≥ 1 is an integer and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sum_{x\in N[v]} f(x) \ge k}$$\end{document} for each \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${v \in V(G)}$$\end{document} , where N[v] is the closed neighborhood of v, then f is a signed k-dominating function on G. A set {f1,f2, . . . ,fd} of distinct signed k-dominating functions on G with the property that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sum_{i=1}^d f_i(x) \le k}$$\end{document} for each \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x \in V(G)}$$\end{document} , is called a signed (k, k)-dominating family (of functions) on G. The maximum number of functions in a signed (k, k)-dominating family on G is the signed (k, k)-domatic number of G. In this article we mainly present upper bounds on the signed (k, k)-domatic number, in particular for regular graphs.
引用
收藏
页码:279 / 287
页数:8
相关论文
共 50 条
  • [21] Signed {k}-domatic numbers of graphs
    1600, Charles Babbage Research Centre (87):
  • [22] SIGNED TOTAL {K}-DOMINATION AND {K}-DOMATIC NUMBERS OF GRAPHS
    Sheikholeslami, S. M.
    Volkmann, L.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2012, 4 (01)
  • [23] Signed (j, k)-domatic numbers of graphs
    Sheikholeslami, S. M.
    Volkmann, L.
    ARS COMBINATORIA, 2016, 126 : 73 - 86
  • [24] Bounds on the l-total k-domatic number of a graph
    Volkmann, Lutz
    UTILITAS MATHEMATICA, 2017, 104 : 103 - 113
  • [25] Signed k-Domatic Numbers of Digraphs
    Aram, H.
    Atapour, M.
    Sheikholeslami, S. M.
    Volkmann, L.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2013, 36 (01) : 143 - 150
  • [26] The {k}-domatic number of a graph
    D. Meierling
    S. M. Sheikholeslami
    L. Volkmann
    Aequationes mathematicae, 2011, 82 : 25 - 34
  • [27] The Roman (k, k)-domatic number of a graph
    Kazemi, A. P.
    Sheikholeslami, S. M.
    Volkmann, L.
    ANNALES MATHEMATICAE ET INFORMATICAE, 2011, 38 : 45 - 57
  • [28] Signed k-domatic numbers of graphs
    Favaron, O.
    Sheikholeslami, S. M.
    Volkmann, L.
    ARS COMBINATORIA, 2015, 123 : 169 - 184
  • [29] On the {k}-domatic number of graphs
    Aram, H.
    Sheikholeslami, S. M.
    Volkmann, L.
    UTILITAS MATHEMATICA, 2016, 100 : 309 - 322
  • [30] The {k}-domatic number of a graph
    Meierling, D.
    Sheikholeslami, S. M.
    Volkmann, L.
    AEQUATIONES MATHEMATICAE, 2011, 82 (1-2) : 25 - 34