Upper bounds on the signed (k, k)-domatic number

被引:0
|
作者
Lutz Volkmann
机构
[1] RWTH-Aachen University,Lehrstuhl II für Mathematik
来源
Aequationes mathematicae | 2013年 / 86卷
关键词
05C69; Signed (; , ; )-domatic numbers; signed ; -dominating function; signed ; -domination number; Regular graphs;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a graph with vertex set V(G), and let f : V(G) → {−1, 1} be a two-valued function. If k ≥ 1 is an integer and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sum_{x\in N[v]} f(x) \ge k}$$\end{document} for each \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${v \in V(G)}$$\end{document} , where N[v] is the closed neighborhood of v, then f is a signed k-dominating function on G. A set {f1,f2, . . . ,fd} of distinct signed k-dominating functions on G with the property that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sum_{i=1}^d f_i(x) \le k}$$\end{document} for each \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x \in V(G)}$$\end{document} , is called a signed (k, k)-dominating family (of functions) on G. The maximum number of functions in a signed (k, k)-dominating family on G is the signed (k, k)-domatic number of G. In this article we mainly present upper bounds on the signed (k, k)-domatic number, in particular for regular graphs.
引用
收藏
页码:279 / 287
页数:8
相关论文
共 50 条