Local well-posedness of lower regularity solutions for the incompressible viscoelastic fluid system

被引:0
|
作者
WenJing Zhao
DaPeng Du
机构
[1] Fudan University,School of Mathematics Science
[2] Fudan University,Institution of Mathematics
来源
Science China Mathematics | 2010年 / 53卷
关键词
Oldroyd-B model; characteristic direction; Stokes kernel; 35Q35; 76D03;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper, the local well-posedness of the incompressible viscoelastic fluid system in the whole space is proved under the following assumption on the initial data: the deformation tensor is Hölder continuous and the velocity is Lp integrable, p > d, where d is the space dimension.
引用
收藏
页码:1521 / 1530
页数:9
相关论文
共 50 条
  • [21] UNIFORM LOCAL WELL-POSEDNESS AND REGULARITY CRITERION FOR THE DENSITY-DEPENDENT INCOMPRESSIBLE FLOW OF LIQUID CRYSTALS
    Fan, Jishan
    Li, Fucai
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2014, 12 (07) : 1185 - 1197
  • [22] Well-posedness for incompressible fluid-solid interaction with vorticity
    Shi, Wei
    Yang, Xin-Guang
    Shen, Lin
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 119
  • [23] Well-posedness and regularity for a class of linear thermo-viscoelastic materials
    Hanyga, A
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2003, 459 (2037): : 2281 - 2296
  • [24] Well-posedness for the incompressible magneto-hydrodynamic system
    Miao, Changxing
    Yuan, Baoquan
    Zhang, Bo
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2007, 30 (08) : 961 - 976
  • [25] Local well-posedness of the free-surface incompressible elastodynamics
    Zhang, Yinghui
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (11) : 6971 - 7011
  • [26] REGULARITY CRITERION FOR THE INCOMPRESSIBLE VISCOELASTIC FLUID SYSTEM
    Fan, Jishan
    Ozawa, Tohru
    HOUSTON JOURNAL OF MATHEMATICS, 2011, 37 (02): : 627 - 636
  • [27] Well-posedness for the Incompressible Hall-MHD Equations in Low Regularity Spaces
    Wu, Xing
    Yu, Yanghai
    Tang, Yanbin
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2018, 15 (02)
  • [28] Well-posedness for the Incompressible Hall-MHD Equations in Low Regularity Spaces
    Xing Wu
    Yanghai Yu
    Yanbin Tang
    Mediterranean Journal of Mathematics, 2018, 15
  • [29] Results on local well-posedness for the incompressible Navier-Stokes-Fokker-Planck system
    Li, Yatao
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (02):
  • [30] Well-Posedness of Surface Wave Equations Above a Viscoelastic Fluid
    Le Meur, Herve V. J.
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2011, 13 (04) : 481 - 514