Well-posedness for the Incompressible Hall-MHD Equations in Low Regularity Spaces

被引:0
|
作者
Xing Wu
Yanghai Yu
Yanbin Tang
机构
[1] Modeling and Scientic Computing Huazhong University of Science and Technology,School of Mathematics and Statistics, Hubei Key Laboratory of Engineering
[2] Henan Agricultural University,College of Information and Management Science
来源
关键词
Hall-MHD equations; Well-posedness; Low regularity Sobolev space; Primary 35Q35; Secondary 76D03;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we first establish the local well-posedness of strong solutions to the Cauchy problem of the incompressible viscous resistive Hall-MHD equations in Hs(R3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^s(\mathbb {R}^3)$$\end{document}(32<s≤52)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\frac{3}{2}< s\le \frac{5}{2})$$\end{document}, and then we prove that the local solution is global when the initial data is small enough.
引用
收藏
相关论文
共 50 条