Well-posedness for the Incompressible Hall-MHD Equations in Low Regularity Spaces

被引:0
|
作者
Xing Wu
Yanghai Yu
Yanbin Tang
机构
[1] Modeling and Scientic Computing Huazhong University of Science and Technology,School of Mathematics and Statistics, Hubei Key Laboratory of Engineering
[2] Henan Agricultural University,College of Information and Management Science
来源
关键词
Hall-MHD equations; Well-posedness; Low regularity Sobolev space; Primary 35Q35; Secondary 76D03;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we first establish the local well-posedness of strong solutions to the Cauchy problem of the incompressible viscous resistive Hall-MHD equations in Hs(R3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^s(\mathbb {R}^3)$$\end{document}(32<s≤52)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\frac{3}{2}< s\le \frac{5}{2})$$\end{document}, and then we prove that the local solution is global when the initial data is small enough.
引用
收藏
相关论文
共 50 条
  • [21] On 3D Hall-MHD Equations with Fractional Laplacians: Global Well-Posedness
    Huali Zhang
    Kun Zhao
    Journal of Mathematical Fluid Mechanics, 2021, 23
  • [22] Regularity criteria for the incompressible Hall-MHD system
    Fan, Jishan
    Fukumoto, Yasuhide
    Nakamura, Gen
    Zhou, Yong
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2015, 95 (11): : 1156 - 1160
  • [23] Local Well-Posedness and Blow-Up for the Solutions to the Axisymmetric Inviscid Hall-MHD Equations
    Jeong, Eunji
    Kim, Junha
    Lee, Jihoon
    ADVANCES IN MATHEMATICAL PHYSICS, 2018, 2018
  • [24] On well-posedness and blow-up for the full compressible Hall-MHD system
    Fan, Jishan
    Ahmad, Bashir
    Hayat, Tasawar
    Zhou, Yong
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2016, 31 : 569 - 579
  • [25] Global well-posedness, BKM blow-up criteria and zero h limit for the 3D incompressible Hall-MHD equations
    Wan, Renhui
    Zhou, Yong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (06) : 3724 - 3747
  • [26] GLOBAL WELL-POSEDNESS FOR THE 3-D INCOMPRESSIBLE MHD EQUATIONS IN THE CRITICAL BESOV SPACES
    Zhai, Xiaoping
    Li, Yongsheng
    Yan, Wei
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2015, 14 (05) : 1865 - 1884
  • [27] Global well-posedness for the incompressible MHD equations with variable viscosity and conductivity
    Chen, Fei
    Li, Yongsheng
    Zhao, Yongye
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 447 (02) : 1051 - 1071
  • [28] WELL-POSEDNESS AND LARGE TIME BEHAVIOR OF SOLUTIONS FOR THE ELECTRON INERTIAL HALL-MHD SYSTEM
    Fukumoto, Yasuhide
    Zhao, Xiaopeng
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2019, 24 (1-2) : 31 - 68
  • [29] LAGRANGIAN APPROACH TO GLOBAL WELL-POSEDNESS OF VISCOUS INCOMPRESSIBLE MHD EQUATIONS
    Liu, Caifeng
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (03): : 2056 - 2080
  • [30] WELL-POSEDNESS IN CRITICAL SPACES FOR THE FULL COMPRESSIBLE MHD EQUATIONS
    Bian, Dongfen
    Guo, Boling
    ACTA MATHEMATICA SCIENTIA, 2013, 33 (04) : 1153 - 1176