Laterally Confined Graphene Nanosheets and Graphene/SnO2 Composites as High-Rate Anode Materials for Lithium-Ion Batteries

被引:124
|
作者
Wang, Zhiyong [1 ]
Zhang, Hao [2 ]
Li, Nan [1 ]
Shi, Zujin [1 ]
Gu, Zhennan [1 ]
Cao, Gaoping [2 ]
机构
[1] Peking Univ, Coll Chem & Mol Engn, State Key Lab Rare Earth Mat Chem & Applicat, Beijing Natl Lab Mol Sci, Beijing 100871, Peoples R China
[2] Res Inst Chem Def, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Carbon; graphene; anode; lithium-ion batteries; SnO2; nanomaterials; HIGH-RATE CAPABILITY; RATE PERFORMANCE; HIGH-POWER; ELECTRODES; GRAPHITE; INTERCALATION; STORAGE; DIFFUSION; INSERTION; CAPACITY;
D O I
10.1007/s12274-010-0041-5
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
High-rate anode materials for lithium-ion batteries are desirable for applications that require high power density. We demonstrate the advantageous rate capability of few-layered graphene nanosheets, with widths of 100-200 nm, over micro-scale graphene nanosheets. Possible reasons for the better performance of the former include their smaller size and better conductivity than the latter. Combination of SnO2 nanoparticles with graphene was used to further improve the gravimetric capacities of the electrode at high charge discharge rates. Furthermore, the volumetric capacity of the composites was substantially enhanced compared to pristine graphene due to the higher density of the composites.
引用
收藏
页码:748 / 756
页数:9
相关论文
共 50 条
  • [41] Graphene-encapsulated mesoporous SnO2 composites as high performance anodes for lithium-ion batteries
    Jiang, Shuhua
    Yue, Wenbo
    Gao, Ziqi
    Ren, Yu
    Ma, Hui
    Zhao, Xinhua
    Liu, Yunling
    Yang, Xiaojing
    JOURNAL OF MATERIALS SCIENCE, 2013, 48 (10) : 3870 - 3876
  • [42] Graphene-encapsulated mesoporous SnO2 composites as high performance anodes for lithium-ion batteries
    Shuhua Jiang
    Wenbo Yue
    Ziqi Gao
    Yu Ren
    Hui Ma
    Xinhua Zhao
    Yunling Liu
    Xiaojing Yang
    Journal of Materials Science, 2013, 48 : 3870 - 3876
  • [43] Design and synthesis of graphene/SnO2/polyacrylamide nanocomposites as anode material for lithium-ion batteries
    Wan, Yuanxin
    Wang, Tianyi
    Lu, Hongyan
    Xu, Xiaoqian
    Zuo, Chen
    Wang, Yong
    Teng, Chao
    RSC ADVANCES, 2018, 8 (21): : 11744 - 11748
  • [44] Synergistic effect of graphene and polypyrrole to enhance the SnO2 anode performance in lithium-ion batteries
    Liu, Ruiqing
    Liu, Yuejiao
    Kang, Qi
    Casimir, Anix
    Zhang, Hanguang
    Li, Ning
    Huang, Zhendong
    Li, Yi
    Lin, Xiujing
    Feng, Xiaomiao
    Ma, Yanwen
    Wu, Gang
    RSC ADVANCES, 2016, 6 (12) : 9402 - 9410
  • [45] Confined Synthesis of SnO2 Nanoparticles Encapsulated in Carbon Nanotubes for High-Rate and Stable Lithium-Ion Batteries
    Liu, Ying
    Chen, Ling
    Jiang, Hao
    Li, Chunzhong
    JOURNAL OF ELECTRONIC MATERIALS, 2022, 51 (12) : 6637 - 6644
  • [46] Confined Synthesis of SnO2 Nanoparticles Encapsulated in Carbon Nanotubes for High-Rate and Stable Lithium-Ion Batteries
    Ying Liu
    Ling Chen
    Hao Jiang
    Chunzhong Li
    Journal of Electronic Materials, 2022, 51 : 6637 - 6644
  • [47] Direct growth of monodisperse SnO2 nanorods on graphene as high capacity anode materials for lithium ion batteries
    Xu, Chaohe
    Sun, Jing
    Gao, Lian
    JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (03) : 975 - 979
  • [48] Sonochemistry-enabled uniform coupling of SnO2 nanocrystals with graphene sheets as anode materials for lithium-ion batteries
    Han, Xiaoyan
    Li, Ran
    Qiu, Shengqiang
    Zhang, Xiaofang
    Zhang, Qing
    Yang, Yingkui
    RSC ADVANCES, 2019, 9 (11): : 5942 - 5947
  • [49] Interfacial engineering in SnO2-embedded graphene anode materials for high performance lithium-ion batteries
    Li, Xiaolu
    Zhao, Zhongtao
    Deng, Yufeng
    Ouyang, Dongsheng
    Yang, Xianfeng
    Chen, Shuguang
    Liu, Peng
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [50] SnO2/graphene nanocomposite as an enhanced anode material for lithium ion batteries
    Wang, Haiteng
    He, Dawei
    Wang, Yongsheng
    Wu, Hongpeng
    Wang, Jigang
    ADVANCED IN NANOSCIENCE AND TECHNOLOGY, 2012, 465 : 108 - +