Interfacial engineering in SnO2-embedded graphene anode materials for high performance lithium-ion batteries

被引:7
|
作者
Li, Xiaolu [1 ]
Zhao, Zhongtao [1 ]
Deng, Yufeng [1 ]
Ouyang, Dongsheng [1 ]
Yang, Xianfeng [1 ]
Chen, Shuguang [1 ]
Liu, Peng [1 ]
机构
[1] Changsha Univ Sci & Technol, Sch Mat Sci & Engn, Changsha 410114, Hunan, Peoples R China
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
基金
中国国家自然科学基金;
关键词
Lithium-ion batteries; Anode materials; Tin dioxide/graphene composites; Interfacial engineering; QUANTUM DOTS; SHEETS; OXIDE; SNO2;
D O I
10.1038/s41598-024-67647-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Tin dioxide is regarded as an alternative anode material rather than graphite due to its high theoretical specific capacity. Modification with carbon is a typical strategy to mitigate the volume expansion effect of SnO2 during the charge process. Strengthening the interface bonding is crucial for improving the electrochemical performance of SnO2/C composites. Here, SnO2-embedded reduced graphene oxide (rGO) composite with a low graphene content of approximately 5 wt.% was in situ synthesized via a cetyltrimethylammonium bromide (CTAB)-assisted hydrothermal method. The structural integrity of the SnO2/rGO composite is significantly improved by optimizing the Sn-O-C electronic structure with CTAB, resulting a reversible capacity of 598 mAh g(-1) after 200 cycles at a current density of 1 A g(-1). CTAB-assisted synthesis enhances the rate performance and cyclic stability of tin dioxide/graphene composites, and boosts their application as the anode materials for the next-generation lithium-ion batteries.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Zn2SnO4/graphene composites as anode materials for high performance lithium-ion batteries
    Qin, Liping
    Liang, Shuquan
    Tan, Xiaoping
    Pan, Anqiang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 692 : 124 - 130
  • [2] Interconnected SnO2/graphene+CNT network as high performance anode materials for lithium-ion batteries
    Lan, Bo
    Wang, Yishan
    Zhang, Xueqian
    Wen, Guangwu
    CERAMICS INTERNATIONAL, 2021, 47 (17) : 24476 - 24484
  • [3] Sn and SnO2-graphene composites as anode materials for lithium-ion batteries
    Qi-Hui Wu
    Chundong Wang
    Jian-Guo Ren
    Ionics, 2013, 19 : 1875 - 1882
  • [4] Lithium-ion Batteries Using SnO2 /Graphene Nanocomposites as Anode Materials
    Wang, Haiteng
    2015 4TH INTERNATIONAL CONFERENCE ON SOCIAL SCIENCES AND SOCIETY (ICSSS 2015), PT 4, 2015, 73 : 338 - 342
  • [5] Synthesis of SnO2/graphene composite anode materials for lithium-ion batteries
    Tan, Qingke
    Kong, Zhen
    Chen, Xiaojing
    Zhang, Lei
    Hu, Xiaoqi
    Mu, Mengxin
    Sun, Haochen
    Shao, Xinchun
    Guan, Xianggang
    Gao, Min
    Xu, Binghui
    APPLIED SURFACE SCIENCE, 2019, 485 : 314 - 322
  • [6] Sn and SnO2-graphene composites as anode materials for lithium-ion batteries
    Wu, Qi-Hui
    Wang, Chundong
    Ren, Jian-Guo
    IONICS, 2013, 19 (12) : 1875 - 1882
  • [7] SnO2 nanoparticles anchored on graphene oxide as advanced anode materials for high-performance lithium-ion batteries
    Ruiping Liu
    Ning Zhang
    Xinyu Wang
    Chenhui Yang
    Hui Cheng
    Hanqing Zhao
    Frontiers of Materials Science, 2019, 13 : 186 - 192
  • [8] Electrospun graphene@SnO2 nanofibers as anode materials with excellent electrochemical performance for lithium-ion batteries
    Mo, Junxiang
    Li, Jun
    Li, Yashan
    Tang, Jianguo
    Lee, Soowohn
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2025, 711
  • [9] Graphene-Supported Mesoporous SnO2 Nanosheets as High-Performance Anode Materials for Lithium-Ion Batteries
    Zhang, Nan
    Xia, Min
    Ge, Changchun
    NANO, 2020, 15 (09)
  • [10] SnO2 nanoparticles anchored on graphene oxide as advanced anode materials for high-performance lithium-ion batteries
    Liu, Ruiping
    Zhang, Ning
    Wang, Xinyu
    Yang, Chenhui
    Cheng, Hui
    Zhao, Hanqing
    FRONTIERS OF MATERIALS SCIENCE, 2019, 13 (02) : 186 - 192