Reduction and adsorption of hydrogen peroxide in the oxygen and beryllium vacancies of beryllium oxide nanotubes

被引:0
|
作者
Ali A Rajhi
Sagr Alamri
Ghaffar Ebadi
机构
[1] King Khalid University,Department of Mechanical Engineering, College of Engineering
来源
Pramana | / 96卷
关键词
Density functional theory; adsorption; reduction; BeO nanotube; nanostructure; hydrogen peroxide; 03.65.-w; 03.65.Ta; 0.5; 20.Dd; 05.40.Ca;
D O I
暂无
中图分类号
学科分类号
摘要
The adsorption of the hydrogen peroxide (H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document}O2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2})$$\end{document} molecule onto pure and (O or Be) vacancies of BeO nanotube (BeONT) was studied using density functional theory computations. As H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document}O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document} approaches the pure BeONT and Be-vacancy BeONT, their adsorption releases −8.3 and −31.3 kcal/mol, respectively, indicating physisorption. Also, the electronic properties of the nanotube do not change significantly. But when H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document}O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document} approaches the O-vacancy BeONT (VO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{\mathrm{O}}$$\end{document}-BeONT), its adsorption releases −471.2 kcal/mol of energy, and electronic analysis showed that the VO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{\mathrm{O}}$$\end{document}-BeONT HOMO/LUMO gap reduces approximately about −29.9% and the electrical conductivity increases significantly. The reactivity of Be atoms of the defect is more towards H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document}O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document} reduction to H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document}O compared with perfect ones. Throughout the process of adsorption, the diffusion of the O atom of the H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document}O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document} molecule was into the vacancy site, thereby dissociating the O–O and O–H bonds of H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document}O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2\, }$$\end{document}and forming H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document}O. Therefore, VO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{\mathrm{O}}$$\end{document}-BeONT can generate electrical signals when the H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document}O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document} molecule approaches, being a hopeful sensor.
引用
收藏
相关论文
共 50 条
  • [41] Enhancement of hydrogen peroxide production by electrochemical reduction of oxygen on carbon nanotubes modified with fluorine
    Wang, Wei
    Lu, Xiaoye
    Su, Pei
    Li, Yawei
    Cai, Jingju
    Zhang, Qizhan
    Zhou, Minghua
    Arotiba, Omotayo
    CHEMOSPHERE, 2020, 259
  • [42] SELF-DIFFUSION OF OXYGEN IN SINGLE-CRYSTAL BERYLLIUM OXIDE
    HOLT, JB
    JOURNAL OF NUCLEAR MATERIALS, 1964, 11 (01) : 107 - 110
  • [43] METHOD AND APPARATUS FOR DETERMINATION OF SMALL ISOTOPIC OXYGEN VARIATIONS IN BERYLLIUM OXIDE
    MEYER, RA
    AUSTERMAN, SB
    SWARTHOUT, DG
    ANALYTICAL CHEMISTRY, 1963, 35 (13) : 2144 - &
  • [44] First-Principles Study of hydrogen retention and diffusion in beryllium oxide
    Allouche, A.
    Ferro, Y.
    SOLID STATE IONICS, 2015, 272 : 91 - 100
  • [45] PHOTOCATALYTIC PROPERTIES OF BERYLLIUM OXIDE - PHOTOACTIVATED HOMOMOLECULAR HYDROGEN-EXCHANGE
    KUZNETSOV, VN
    LISACHENKO, AA
    VILESOV, FI
    DOKLADY AKADEMII NAUK SSSR, 1975, 222 (06): : 1373 - 1376
  • [46] Adsorption and dissociation of hydrogen peroxide on the defected carbon nanotubes
    Omidi, Mohammad Hassan
    Soleymanabadi, Hamed
    Bagheri, Zargham
    STRUCTURAL CHEMISTRY, 2015, 26 (02) : 485 - 490
  • [47] Adsorption and dissociation of hydrogen peroxide on the defected carbon nanotubes
    Mohammad Hassan Omidi
    Hamed Soleymanabadi
    Zargham Bagheri
    Structural Chemistry, 2015, 26 : 485 - 490
  • [48] EFFECTS OF HYDROGEN AND OF CESIUM ADSORPTION ON A BERYLLIUM SURFACE - A THEORETICAL AND EXPERIMENTAL-STUDY
    MARINO, MM
    ERMLER, WC
    TOMPA, GS
    SEIDL, M
    SURFACE SCIENCE, 1989, 208 (1-2) : 189 - 204
  • [49] Oxygen and Hydrogen Peroxide Reduction on Polycrystalline Platinum in Acid Electrolytes: Effects of Bromide Adsorption
    Jebaraj, Adriel J. J.
    Georgescu, Nicholas S.
    Scherson, Daniel A.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (29): : 16090 - 16099
  • [50] CONDUCTOMETRIC DETERMINATION OF SULFUR IN BERYLLIUM OXIDE CERAMICS USING INDUCTION HEATING AND PEROXIDE ABSORPTION
    CHAPMAN, JF
    THACKRAY, M
    ANALYTICAL CHEMISTRY, 1968, 40 (01) : 202 - &