Reduction and adsorption of hydrogen peroxide in the oxygen and beryllium vacancies of beryllium oxide nanotubes

被引:0
|
作者
Ali A Rajhi
Sagr Alamri
Ghaffar Ebadi
机构
[1] King Khalid University,Department of Mechanical Engineering, College of Engineering
来源
Pramana | / 96卷
关键词
Density functional theory; adsorption; reduction; BeO nanotube; nanostructure; hydrogen peroxide; 03.65.-w; 03.65.Ta; 0.5; 20.Dd; 05.40.Ca;
D O I
暂无
中图分类号
学科分类号
摘要
The adsorption of the hydrogen peroxide (H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document}O2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2})$$\end{document} molecule onto pure and (O or Be) vacancies of BeO nanotube (BeONT) was studied using density functional theory computations. As H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document}O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document} approaches the pure BeONT and Be-vacancy BeONT, their adsorption releases −8.3 and −31.3 kcal/mol, respectively, indicating physisorption. Also, the electronic properties of the nanotube do not change significantly. But when H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document}O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document} approaches the O-vacancy BeONT (VO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{\mathrm{O}}$$\end{document}-BeONT), its adsorption releases −471.2 kcal/mol of energy, and electronic analysis showed that the VO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{\mathrm{O}}$$\end{document}-BeONT HOMO/LUMO gap reduces approximately about −29.9% and the electrical conductivity increases significantly. The reactivity of Be atoms of the defect is more towards H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document}O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document} reduction to H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document}O compared with perfect ones. Throughout the process of adsorption, the diffusion of the O atom of the H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document}O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document} molecule was into the vacancy site, thereby dissociating the O–O and O–H bonds of H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document}O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2\, }$$\end{document}and forming H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document}O. Therefore, VO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{\mathrm{O}}$$\end{document}-BeONT can generate electrical signals when the H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document}O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document} molecule approaches, being a hopeful sensor.
引用
收藏
相关论文
共 50 条
  • [31] ADSORPTION BEHAVIOUR OF HYDROUS BERYLLIUM OXIDE IN MEDIA OF VARYING PH
    DUTTA, R
    BANERJI, SK
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES CHIMIQUES, 1968, 16 (06): : 299 - &
  • [32] Electronic structure and magnetism in BeO nanotubes induced by boron, carbon and nitrogen doping, and beryllium and oxygen vacancies inside tube walls
    Gorbunova, M. A.
    Shein, I. R.
    Makurin, Yu. N.
    Ivanovskaya, V. V.
    Kijko, V. S.
    Ivanovskii, A. L.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2008, 41 (01): : 164 - 168
  • [33] KINETICS AND MECHANISM OF DECOMPOSITION OF HYDROGEN-PEROXIDE CATALYZED BY CU-2+ ADSORBED ON BERYLLIUM-OXIDE
    TIWARI, SK
    SINGH, RN
    INDIAN JOURNAL OF TECHNOLOGY, 1987, 25 (09): : 401 - 404
  • [34] Electronic properties of functionalized (5,5) beryllium oxide nanotubes
    Chigo Anota, Ernesto
    Hernandez Cocoletzi, Gregorio
    JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 2013, 42 : 115 - 119
  • [35] CRYSTAL ORBITAL STUDIES OF CHEMISORPTION - ADSORPTION OF MOLECULAR-HYDROGEN ON BERYLLIUM
    LAVERY, R
    HILLIER, IH
    CHEMICAL PHYSICS, 1976, 16 (03) : 281 - 286
  • [36] Adsorption of hydrogen on clean and oxidized beryllium studied by direct recoil spectrometry
    Zalkind, S
    Polak, M
    Shamir, N
    APPLIED SURFACE SCIENCE, 1997, 115 (03) : 273 - 278
  • [37] ROLE OF ADSORPTION LAYERS IN THERMOSTIMULATED EXOEMISSION FROM BERYLLIUM-OXIDE
    KRYLOVA, IV
    SVITOV, VI
    PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1976, 37 (01): : K9 - K12
  • [38] Effects of the HCN adsorption on the structural and electronic parameters of the beryllium oxide nanotube
    Mina Marvi
    Heidar Raissi
    Hamideh Ghiassi
    Structural Chemistry, 2016, 27 : 557 - 571
  • [39] Effects of the HCN adsorption on the structural and electronic parameters of the beryllium oxide nanotube
    Marvi, Mina
    Raissi, Heidar
    Ghiassi, Hamideh
    STRUCTURAL CHEMISTRY, 2016, 27 (02) : 557 - 571
  • [40] STICKING COEFFICIENTS OF NITROGEN HYDROGEN OXYGEN AND CARBON MONOXIDE ON A BERYLLIUM FILM
    HURD, JT
    ADAMS, RO
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY, 1968, 5 (05): : 183 - &