Existence of ground state solutions for weighted biharmonic problem involving non linear exponential growth

被引:0
|
作者
Brahim Dridi
Rached Jaidane
机构
[1] Umm Al-Qura University,Department of Mathematics, Faculty of Applied Sciences
[2] University of Tunis El Manar,Department of Mathematics, Faculty of Science of Tunis
关键词
Weighted Sobolev space; Biharmonic operator; Critical exponential growth; 35J20; 49J45; 35K57; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we study the following problem Δ(wβ(x)Δu)=f(x,u)inB,u=∂u∂n=0on∂B,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \Delta (w_{\beta }(x)\Delta u) = \ f(x,u) \quad \text{ in } \quad B, \quad u=\frac{\partial u}{\partial n}=0 \quad \text{ on } \quad \partial B, \end{aligned}$$\end{document}where B is the unit ball of R4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{4}$$\end{document} and wβ(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ w_{\beta }(x)$$\end{document} a singular weight of logarithm type. The reaction source f(x, u) is a radial function with respect to x and it is critical in view of exponential inequality of Adams’ type. The existence result is proved by using the constrained minimization in Nehari set coupled with the quantitative deformation lemma and degree theory results.
引用
收藏
页码:831 / 851
页数:20
相关论文
共 50 条
  • [41] Ground state solutions of a critical problem involving cylindrical weights
    Musina, Roberta
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (12) : 3972 - 3986
  • [42] Existence and asymptotic behavior of ground states for linearly coupled systems involving exponential growth
    Severo, Uberlandio B.
    de Albuquerque, Jose Carlos
    dos Santos, Edjane O.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2024, 203 (03) : 1419 - 1441
  • [43] Ground State Solution for a Kirchhoff Problem with Exponential Critical Growth
    Giovany M. Figueiredo
    Uberlandio B. Severo
    Milan Journal of Mathematics, 2016, 84 : 23 - 39
  • [44] GROUND STATE SOLUTIONS OF MAGNETIC SCHRODINGER EQUATIONS WITH EXPONENTIAL GROWTH
    Wen, L. I. X. I.
    Radulescu, V. I. C. E. N. T. I. U.
    Tang, X. I. A. N. H. U. A.
    Chen, S. I. T. O. N. G.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2022, : 5783 - 5815
  • [45] Ground State Solution for a Kirchhoff Problem with Exponential Critical Growth
    Figueiredo, Giovany M.
    Severo, Uberlandio B.
    MILAN JOURNAL OF MATHEMATICS, 2016, 84 (01) : 23 - 39
  • [46] Existence and exponential decay of ground-state solutions for a nonlinear Dirac equation
    Zhang, Jian
    Zhang, Wen
    Zhao, Fukun
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (05):
  • [47] Existence and exponential decay of ground-state solutions for a nonlinear Dirac equation
    Jian Zhang
    Wen Zhang
    Fukun Zhao
    Zeitschrift für angewandte Mathematik und Physik, 2018, 69
  • [48] Existence of three solutions for a Navier boundary value problem involving the (p(x),q(x))-biharmonic
    Feng-Li Huang
    Guang-Sheng Chen
    Yu-Qi Niu
    Ti Song
    Boundary Value Problems, 2013
  • [49] Existence of three solutions for a Navier boundary value problem involving the (p(x), q(x))-biharmonic
    Huang, Feng-Li
    Chen, Guang-Sheng
    Niu, Yu-Qi
    Song, Ti
    BOUNDARY VALUE PROBLEMS, 2013,
  • [50] EXISTENCE OF RADIAL SOLUTIONS FOR A WEIGHTED p-BIHARMONIC PROBLEM WITH NAVIER BOUNDARY CONDITION ON THE HEISENBERG GROUP
    Safari, Farzaneh
    Razani, Abdolrahman
    MATHEMATICA SLOVACA, 2022, 72 (03) : 677 - 692