Existence and asymptotic behavior of ground states for linearly coupled systems involving exponential growth

被引:0
|
作者
Severo, Uberlandio B. [1 ]
de Albuquerque, Jose Carlos [2 ]
dos Santos, Edjane O. [2 ]
机构
[1] Univ Fed Paraiba, Dept Matemat, BR-58051900 Joao Pessoa, PB, Brazil
[2] Univ Fed Pernambuco, Dept Matemat, BR-50670901 Recife, PE, Brazil
关键词
Linearly coupled systems; Critical exponential growth; Ground state solution; Asymptotic behavior; VECTOR SOLUTIONS; SCHRODINGER-EQUATIONS;
D O I
10.1007/s10231-023-01407-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the following class of linearly coupled systems in the plane: -Delta u+u=f(1)(u)+lambda v,inR(2),-Delta v+v=f(2)(v)+lambda u,inR(2)where f(1),f(2) are continuous functions with critical exponential growth in the sense of Trudinger-Moser inequality and 0<lambda<1 is a parameter. First, for any lambda is an element of(0,1),byusing minimization arguments and minimax estimates we prove the existence of a positiveground state solution. Moreover, we study the asymptotic behavior of these solutions when lambda -> 0+. This class of systems can model phenomena in nonlinear optics and in plasma physics.
引用
收藏
页码:1419 / 1441
页数:23
相关论文
共 50 条