On the Crossing of Maximal Subgroups of Finite Groups

被引:0
|
作者
R. V. Borodich
机构
[1] Skorina Gomel’ State University,
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We establish the structure of normal subgroups in θ-Frattini extensions, where θ is a subgroup functor. For a local Fitting structure F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{F} $$\end{document} containing all nilpotent groups, it is shown that, in a soluble group, the crossing of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{F} $$\end{document}-abnormal maximal θ -subgroups not containing F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{F} $$\end{document}-radicals and not belonging to F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{F} $$\end{document} coincides with the crossing of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{F} $$\end{document}-abnormal maximal θ -subgroups and belongs to the structure of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{F} $$\end{document}.
引用
收藏
页码:1664 / 1676
页数:12
相关论文
共 50 条
  • [41] MAXIMAL NILPOTENT SUBGROUPS OF FINITE SOLUBLE GROUPS
    TOMKINSO.MJ
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1974, 9 (NOV): : 35 - 45
  • [42] Finite simple groups with complemented maximal subgroups
    Levchuk, V. M.
    Likharev, A. G.
    SIBERIAN MATHEMATICAL JOURNAL, 2006, 47 (04) : 659 - 668
  • [43] On the σ-Length of Maximal Subgroups of Finite σ-Soluble Groups
    Heliel, Abd El-Rahman
    Al-Shomrani, Mohammed
    Ballester-Bolinches, Adolfo
    MATHEMATICS, 2020, 8 (12) : 1 - 4
  • [44] On Prime Spectrum of Maximal Subgroups in Finite Groups
    Zhang, Chi
    Guo, Wenbin
    Maslova, Natalia V.
    Revin, Danila O.
    ALGEBRA COLLOQUIUM, 2018, 25 (04) : 579 - 584
  • [45] Finite simple groups with complemented maximal subgroups
    V. M. Levchuk
    A. G. Likharev
    Siberian Mathematical Journal, 2006, 47 : 659 - 668
  • [46] On the maximal overgroups of Sylow subgroups of finite groups
    Baumeister, Barbara
    Burness, Timothy C.
    Guralnick, Robert M.
    -Viet, Hung P. Tong
    ADVANCES IN MATHEMATICS, 2024, 444
  • [47] X-permutable maximal subgroups of Sylow subgroups of finite groups
    Guo W.
    Shum K.P.
    Skiba A.N.
    Ukrainian Mathematical Journal, 2006, 58 (10) : 1471 - 1480
  • [48] ON M-PERMUTABLE MAXIMAL SUBGROUPS OF SYLOW SUBGROUPS OF FINITE GROUPS
    Long Miao
    Lempken, Wolfgang
    COMMUNICATIONS IN ALGEBRA, 2010, 38 (10) : 3649 - 3659
  • [49] Maximal orders of Abelian subgroups in finite Chevalley groups
    Vdovin, EP
    MATHEMATICAL NOTES, 2001, 69 (3-4) : 475 - 498
  • [50] Maximal cyclic subgroups and prime divisors in finite groups
    Arad, Z
    Herfort, W
    ARCHIV DER MATHEMATIK, 2005, 85 (01) : 31 - 36